Scene perception and the visual control of travel direction in navigating wood ants

This review reflects a few of Mike Land's many and varied contributions to visual science. In it, we show for wood ants, as Mike has done for a variety of animals, including readers of this piece, what can be learnt from a detailed analysis of an animal's visually guided eye, head or body movements. In the case of wood ants, close examination of their body movements, as they follow visually guided routes, is starting to reveal how they perceive and respond to their visual world and negotiate a path within it. We describe first some of the mechanisms that underlie the visual control of their paths, emphasizing that vision is not the ant's only sense. In the second part, we discuss how remembered local shape-dependent and global shape-independent features of a visual scene may interact in guiding the ant's path.

[1]  G. K. Wallace Visual Scanning in the Desert Locust Schistocerca Gregaria Forskål , 1959 .

[2]  B. Hölldobler,et al.  Homing in the harvester ant Pogonomyrmex badius. , 1971, Science.

[3]  Thomas S. Collett,et al.  SHORT COMMUNICATION PEERING - A LOCUST BEHAVIOUR PATTERN FOR OBTAINING MOTION PARALLAX INFORMATION , 1978 .

[4]  H. Wagner Flight Performance and Visual Control of Flight of the Free-Flying Housefly (Musca Domestica L.) III. Interactions Between Angular Movement Induced by Wide- and Smallfield Stimuli , 1986 .

[5]  H. Wagner Flight performance and visual control of flight of the free-flying housefly (Musca domestica L.) II. Pursuit of targets , 1986 .

[6]  M. Breed,et al.  Effects of experience on use of orientation cues in the giant tropical ant , 1989, Animal Behaviour.

[7]  A. Borst How Do Flies Land?From behavior to neuronal circuits , 1990 .

[8]  M. Srinivasan,et al.  Range perception through apparent image speed in freely flying honeybees , 1991, Visual Neuroscience.

[9]  R. Wehner,et al.  Visual navigation in insects: coupling of egocentric and geocentric information , 1996, The Journal of experimental biology.

[10]  T. Collett,et al.  Multiple stored views and landmark guidance in ants , 1998, Nature.

[11]  R. Strauss,et al.  Persistence of orientation toward a temporarily invisible landmark in Drosophila melanogaster , 1998, Journal of Comparative Physiology A.

[12]  M. Heisenberg,et al.  The memory template in Drosophila pattern vision at the flight simulator , 1999, Vision Research.

[13]  R. Olberg,et al.  Prey pursuit and interception in dragonflies , 2000, Journal of Comparative Physiology A.

[14]  R. Wehner,et al.  Pinpointing food sources: olfactory and anemotactic orientation in desert ants, Cataglyphis fortis. , 2000, The Journal of experimental biology.

[15]  T. Collett,et al.  The guidance of desert ants by extended landmarks. , 2001, The Journal of experimental biology.

[16]  Ralf Möller,et al.  Insects could exploit UV-green contrast for Landmark navigation. , 2002, Journal of theoretical biology.

[17]  Paul Graham,et al.  View-based navigation in insects: how wood ants (Formica rufa L.) look at and are guided by extended landmarks. , 2002, The Journal of experimental biology.

[18]  T. Collett,et al.  Snapshot Memories and Landmark Guidance in Wood Ants , 2003, Current Biology.

[19]  G. Horridge,et al.  Discrimination of single bars by the honeybee (Apis mellifera) , 2003, Vision Research.

[20]  T. Collett,et al.  Visual landmarks and route following in desert ants , 1992, Journal of Comparative Physiology A.

[21]  J. H. van Hateren,et al.  Pattern recognition in bees: orientation discrimination , 1990, Journal of Comparative Physiology A.

[22]  E. C. Sobel The locust's use of motion parallax to measure distance , 1990, Journal of Comparative Physiology A.

[23]  W. Hangartner Spezifität und Inaktivierung des Spurpheromons von Lasius fuliginosus Latr. und Orientierung der Arbeiterinnen im Duftfeld , 1967, Zeitschrift für vergleichende Physiologie.

[24]  M. Lindauer,et al.  Himmel und Erde in Konkurrenz bei der Orientierung der Bienen , 2004, Naturwissenschaften.

[25]  T. Collett,et al.  Chasing behaviour of houseflies (Fannia canicularis) , 1974, Journal of comparative physiology.

[26]  W. Hangartner,et al.  Structure and variability of the individual odor trail in Solenopsis geminata Fabr. (Hymenoptera, Formicidae) , 1969, Zeitschrift für vergleichende Physiologie.

[27]  Martin Giurfa,et al.  Local-feature assembling in visual pattern recognition and generalization in honeybees , 2004, Nature.

[28]  R. Strauss,et al.  Goal-Driven Behavioral Adaptations in Gap-Climbing Drosophila , 2005, Current Biology.

[29]  J. Deneubourg,et al.  Memory and chemical communication in the orientation of two mass-recruiting ant species , 1993, Insectes Sociaux.

[30]  Rüdiger Wehner,et al.  Idiosyncratic route-based memories in desert ants, Melophorus bagoti: How do they interact with path-integration vectors? , 2005, Neurobiology of Learning and Memory.

[31]  R. Rosengren,et al.  Ortstreue in foraging ants of theFormica rufa group — Hierarchy of orienting cues and long-term memory , 1986, Insectes Sociaux.

[32]  Martin Giurfa,et al.  The influence of training length on generalization of visual feature assemblies in honeybees , 2005, Behavioural Brain Research.

[33]  T. Collett,et al.  Visual control of flight behaviour in the hoverflySyritta pipiens L. , 1975, Journal of comparative physiology.

[34]  J. Deneubourg,et al.  Visual cues and trail-following idiosyncrasy inleptothorax unifasciatus: An orientation process during foraging , 1988, Insectes Sociaux.

[35]  M. Heisenberg,et al.  Distinct memory traces for two visual features in the Drosophila brain , 2006, Nature.

[36]  Karl Kral,et al.  Motion parallax as a source of distance information in locusts and mantids , 2007, Journal of Insect Behavior.

[37]  Paul Graham,et al.  Visual Cues for the Retrieval of Landmark Memories by Navigating Wood Ants , 2007, Current Biology.

[38]  H. Krapp,et al.  Sensory Systems and Flight Stability: What do Insects Measure and Why? , 2007 .

[39]  Dario L. Ringach,et al.  Flies see second-order motion , 2008, Current Biology.

[40]  R. Strauss,et al.  Analysis of a spatial orientation memory in Drosophila , 2008, Nature.

[41]  R. Cardé,et al.  Navigational Strategies Used by Insects to Find Distant, Wind-Borne Sources of Odor , 2008, Journal of Chemical Ecology.

[42]  Michael H. Dickinson,et al.  A Simple Vision-Based Algorithm for Decision Making in Flying Drosophila , 2008, Current Biology.

[43]  P. Graham,et al.  Ants use the panoramic skyline as a visual cue during navigation , 2009, Current Biology.

[44]  Paul Graham,et al.  A Motor Component to the Memories of Habitual Foraging Routes in Wood Ants? , 2009, Current Biology.

[45]  Paul Graham,et al.  Image-matching during ant navigation occurs through saccade-like body turns controlled by learned visual features , 2010, Proceedings of the National Academy of Sciences.

[46]  S. Laughlin,et al.  Visual Targeting of Forelimbs in Ladder-Walking Locusts , 2010, Current Biology.

[47]  Matthew Collett,et al.  How desert ants use a visual landmark for guidance along a habitual route , 2010, Proceedings of the National Academy of Sciences.

[48]  M. Knaden,et al.  Desert ants benefit from combining visual and olfactory landmarks , 2011, Journal of Experimental Biology.

[49]  Adrian Horridge What does the honeybee see? And how do we know?: A critique of scientific reason , 2011 .

[50]  Mandyam V Srinivasan,et al.  Honeybees as a model for the study of visually guided flight, navigation, and biologically inspired robotics. , 2011, Physiological reviews.

[51]  Francisco A. Zabala,et al.  A Simple Strategy for Detecting Moving Objects during Locomotion Revealed by Animal-Robot Interactions , 2012, Current Biology.

[52]  Rafael Kurtz,et al.  Neuronal representation of visual motion and orientation in the fly medulla , 2012, Front. Neural Circuits.

[53]  Martin Egelhaaf,et al.  Spatial vision in insects is facilitated by shaping the dynamics of visual input through behavioral action , 2012, Front. Neural Circuits.

[54]  B. Webb,et al.  Spontaneous formation of multiple routes in individual desert ants (Cataglyphis velox) , 2012 .

[55]  Andrew Philippides,et al.  A Model of Ant Route Navigation Driven by Scene Familiarity , 2012, PLoS Comput. Biol..

[56]  Ken Cheng,et al.  How to navigate without maps: The power of taxon-like navigation in ants , 2012 .

[57]  Antoine Wystrach,et al.  Ants might use different view-matching strategies on and off the route , 2012, Journal of Experimental Biology.

[58]  Markus Knaden,et al.  Path Integration Controls Nest-Plume Following in Desert Ants , 2012, Current Biology.

[59]  David D. Lent,et al.  Visual Scene Perception in Navigating Wood Ants , 2013, Current Biology.

[60]  Paul Graham,et al.  Phase-Dependent Visual Control of the Zigzag Paths of Navigating Wood Ants , 2013, Current Biology.