Invertibility of Sparse non-Hermitian matrices
暂无分享,去创建一个
[1] M. Talagrand,et al. Probability in Banach Spaces: Isoperimetry and Processes , 1991 .
[2] M. Rudelson,et al. The circular law for sparse non-Hermitian matrices , 2017, The Annals of Probability.
[3] S. Smale. On the efficiency of algorithms of analysis , 1985 .
[4] R. Latala. Some estimates of norms of random matrices , 2005 .
[5] A. Edelman. Eigenvalues and condition numbers of random matrices , 1988 .
[6] M. Ledoux. The concentration of measure phenomenon , 2001 .
[7] Stanislaw J. Szarek,et al. Condition numbers of random matrices , 1991, J. Complex..
[8] Alexander Tikhomirov,et al. The circular law for random matrices , 2007, 0709.3995.
[9] J. W. Silverstein,et al. Spectral Analysis of Large Dimensional Random Matrices , 2009 .
[10] Mark Rudelson,et al. Invertibility of random matrices: Unitary and orthogonal perturbations , 2012, 1206.5180.
[11] J. Neumann,et al. Numerical inverting of matrices of high order , 1947 .
[12] A. Dembo,et al. Limiting spectral distribution of sum of unitary and orthogonal matrices , 2012, 1208.5100.
[13] M. Rudelson,et al. The smallest singular value of a random rectangular matrix , 2008, 0802.3956.
[14] Cedric E. Ginestet. Spectral Analysis of Large Dimensional Random Matrices, 2nd edn , 2012 .
[15] M. Rudelson. Recent developments in non-asymptotic theory of random matrices , 2013, 1301.2382.
[16] Yoav Seginer,et al. The Expected Norm of Random Matrices , 2000, Combinatorics, Probability and Computing.
[17] Mark Rudelson,et al. No-gaps delocalization for general random matrices , 2015, Geometric and Functional Analysis.
[18] M. Rudelson. Invertibility of random matrices: norm of the inverse , 2005, math/0507024.
[19] A. Bandeira,et al. Sharp nonasymptotic bounds on the norm of random matrices with independent entries , 2014, 1408.6185.
[20] S. Szarek,et al. Chapter 8 - Local Operator Theory, Random Matrices and Banach Spaces , 2001 .
[21] Roman Vershynin,et al. Invertibility of symmetric random matrices , 2011, Random Struct. Algorithms.
[22] R. Latala. Estimation of moments of sums of independent real random variables , 1997 .
[23] C. Bordenave,et al. Around the circular law , 2011, 1109.3343.
[24] Philip Matchett Wood. Universality and the circular law for sparse random matrices. , 2010, 1010.1726.
[25] M. Rudelson,et al. Smallest singular value of random matrices and geometry of random polytopes , 2005 .
[26] H. Nguyen. Random doubly stochastic matrices: The circular law , 2012, 1205.0843.
[27] R. Vershynin. Spectral norm of products of random and deterministic matrices , 2008, 0812.2432.
[28] T. Tao,et al. RANDOM MATRICES: THE CIRCULAR LAW , 2007, 0708.2895.
[29] Terence Tao,et al. Random matrices: Universality of ESDs and the circular law , 2008, 0807.4898.
[30] Ofer Zeitouni,et al. The single ring theorem , 2009, 0909.2214.
[31] Gábor Lugosi,et al. Concentration Inequalities - A Nonasymptotic Theory of Independence , 2013, Concentration Inequalities.
[32] R. Lata,et al. SOME ESTIMATES OF NORMS OF RANDOM MATRICES , 2004 .
[33] Charles Bordenave,et al. Circular law theorem for random Markov matrices , 2008, Probability Theory and Related Fields.
[34] Omar Rivasplata,et al. Smallest singular value of sparse random matrices , 2011, 1106.0938.
[35] M. Rudelson,et al. The Littlewood-Offord problem and invertibility of random matrices , 2007, math/0703503.
[36] M. Rudelson,et al. The least singular value of a random square matrix is O(n−1/2) , 2008, 0805.3407.