Invertibility of Sparse non-Hermitian matrices

We consider a class of sparse random matrices of the form $A_n =(\xi_{i,j}\delta_{i,j})_{i,j=1}^n$, where $\{\xi_{i,j}\}$ are i.i.d.~centered random variables, and $\{\delta_{i,j}\}$ are i.i.d.~Bernoulli random variables taking value $1$ with probability $p_n$, and prove a quantitative estimate on the smallest singular value for $p_n = \Omega(\frac{\log n}{n})$, under a suitable assumption on the spectral norm of the matrices. This establishes the invertibility of a large class of sparse matrices. For $p_n =\Omega( n^{-\alpha})$ with some $\alpha \in (0,1)$, we deduce that the condition number of $A_n$ is of order $n$ with probability tending to one under the optimal moment assumption on $\{\xi_{i,j}\}$. This in particular, extends a conjecture of von Neumann about the condition number to sparse random matrices with heavy-tailed entries. In the case that the random variables $\{\xi_{i,j}\}$ are i.i.d.~sub-Gaussian, we further show that a sparse random matrix is singular with probability at most $\exp(-c n p_n)$ whenever $p_n$ is above the critical threshold $p_n = \Omega(\frac{ \log n}{n})$. The results also extend to the case when $\{\xi_{i,j}\}$ have a non-zero mean. We further find quantitative estimates on the smallest singular value of the adjacency matrix of a directed Erd\H{o}s-R\'{e}yni graph whenever its edge connectivity probability is above the critical threshold $\Omega(\frac{\log n}{n})$.

[1]  M. Talagrand,et al.  Probability in Banach Spaces: Isoperimetry and Processes , 1991 .

[2]  M. Rudelson,et al.  The circular law for sparse non-Hermitian matrices , 2017, The Annals of Probability.

[3]  S. Smale On the efficiency of algorithms of analysis , 1985 .

[4]  R. Latala Some estimates of norms of random matrices , 2005 .

[5]  A. Edelman Eigenvalues and condition numbers of random matrices , 1988 .

[6]  M. Ledoux The concentration of measure phenomenon , 2001 .

[7]  Stanislaw J. Szarek,et al.  Condition numbers of random matrices , 1991, J. Complex..

[8]  Alexander Tikhomirov,et al.  The circular law for random matrices , 2007, 0709.3995.

[9]  J. W. Silverstein,et al.  Spectral Analysis of Large Dimensional Random Matrices , 2009 .

[10]  Mark Rudelson,et al.  Invertibility of random matrices: Unitary and orthogonal perturbations , 2012, 1206.5180.

[11]  J. Neumann,et al.  Numerical inverting of matrices of high order , 1947 .

[12]  A. Dembo,et al.  Limiting spectral distribution of sum of unitary and orthogonal matrices , 2012, 1208.5100.

[13]  M. Rudelson,et al.  The smallest singular value of a random rectangular matrix , 2008, 0802.3956.

[14]  Cedric E. Ginestet Spectral Analysis of Large Dimensional Random Matrices, 2nd edn , 2012 .

[15]  M. Rudelson Recent developments in non-asymptotic theory of random matrices , 2013, 1301.2382.

[16]  Yoav Seginer,et al.  The Expected Norm of Random Matrices , 2000, Combinatorics, Probability and Computing.

[17]  Mark Rudelson,et al.  No-gaps delocalization for general random matrices , 2015, Geometric and Functional Analysis.

[18]  M. Rudelson Invertibility of random matrices: norm of the inverse , 2005, math/0507024.

[19]  A. Bandeira,et al.  Sharp nonasymptotic bounds on the norm of random matrices with independent entries , 2014, 1408.6185.

[20]  S. Szarek,et al.  Chapter 8 - Local Operator Theory, Random Matrices and Banach Spaces , 2001 .

[21]  Roman Vershynin,et al.  Invertibility of symmetric random matrices , 2011, Random Struct. Algorithms.

[22]  R. Latala Estimation of moments of sums of independent real random variables , 1997 .

[23]  C. Bordenave,et al.  Around the circular law , 2011, 1109.3343.

[24]  Philip Matchett Wood Universality and the circular law for sparse random matrices. , 2010, 1010.1726.

[25]  M. Rudelson,et al.  Smallest singular value of random matrices and geometry of random polytopes , 2005 .

[26]  H. Nguyen Random doubly stochastic matrices: The circular law , 2012, 1205.0843.

[27]  R. Vershynin Spectral norm of products of random and deterministic matrices , 2008, 0812.2432.

[28]  T. Tao,et al.  RANDOM MATRICES: THE CIRCULAR LAW , 2007, 0708.2895.

[29]  Terence Tao,et al.  Random matrices: Universality of ESDs and the circular law , 2008, 0807.4898.

[30]  Ofer Zeitouni,et al.  The single ring theorem , 2009, 0909.2214.

[31]  Gábor Lugosi,et al.  Concentration Inequalities - A Nonasymptotic Theory of Independence , 2013, Concentration Inequalities.

[32]  R. Lata,et al.  SOME ESTIMATES OF NORMS OF RANDOM MATRICES , 2004 .

[33]  Charles Bordenave,et al.  Circular law theorem for random Markov matrices , 2008, Probability Theory and Related Fields.

[34]  Omar Rivasplata,et al.  Smallest singular value of sparse random matrices , 2011, 1106.0938.

[35]  M. Rudelson,et al.  The Littlewood-Offord problem and invertibility of random matrices , 2007, math/0703503.

[36]  M. Rudelson,et al.  The least singular value of a random square matrix is O(n−1/2) , 2008, 0805.3407.