OFDM-MIMO Applications for High Altitude Platform Communications

In this chapter we propose a combined Orthogonal Frequency Division Multiplexing (OFDM) and Multiple-Input Multiple-Output (MIMO), i.e. OFDM-MIMO system, in order to increase the capacity of High Altitude Platform (HAP) communication links. In the proposed system, the OFDM parameters and various compact MIMO antenna array configurations are investigated and their performance, in term of capacity, is analysed. In addition, since these special compact MIMO antenna array configurations depend on the array elements being positioned very closely together, the effect of mutual coupling and spatial correlation will also be analysed and taken into account when performing the simulation for this combined diversity system. Further, we will investigate the influence of the separation angle between the multiple relaying platforms on system performance, and determine the optimal separation angles that maximize the total capacity of the system.

[1]  Abbas Mohammed,et al.  Capacity of multiple HAP system employing multiple polarizations , 2006, 2006 First European Conference on Antennas and Propagation.

[2]  A. Vaziri,et al.  Entanglement of the orbital angular momentum states of photons , 2001, Nature.

[3]  A. Mohammed,et al.  Performance evaluation of a MIMO satellite diversity system , 2008, 2008 10th International Workshop on Signal Processing for Space Communications.

[4]  Emanuela Falletti,et al.  Multi-antenna Channel Model for Space-Polarization Systems , 2007 .

[5]  Abbas Mohammed,et al.  MIMO Antenna Applications for LEO Satellite Communications , 2005 .

[6]  M. J. Gans,et al.  On Limits of Wireless Communications in a Fading Environment when Using Multiple Antennas , 1998, Wirel. Pers. Commun..

[7]  R. Fox,et al.  Classical Electrodynamics, 3rd ed. , 1999 .

[8]  R. Janaswamy Effect of element mutual coupling on the capacity of fixed length linear arrays , 2002, IEEE Antennas and Wireless Propagation Letters.

[9]  Martin Harwit,et al.  Photon Orbital Angular Momentum in Astrophysics , 2003, astro-ph/0307430.

[10]  Abbas Mohammed,et al.  HAP Diversity and Compact MIMO Antennas for High Data Rate Communications , 2006, IEEE Vehicular Technology Conference.

[11]  Abbas Mohammed,et al.  Compact MIMO Antennas and HAP Diversity for Enhanced Data Rate Communications , 2007, 2007 IEEE 65th Vehicular Technology Conference - VTC2007-Spring.

[12]  Emanuela Falletti,et al.  A Matrix Channel Model for Transmit and Receive Smart Antennas Systems , 2006, 2006 IEEE 63rd Vehicular Technology Conference.

[13]  A. Mohammed,et al.  High Altitude Platforms for Wireless Sensor Network applications , 2008, 2008 IEEE International Symposium on Wireless Communication Systems.

[14]  Partha P. Mitra,et al.  Tripling the capacity of wireless communications using electromagnetic polarization , 2001, Nature.

[15]  Emre Telatar,et al.  Capacity of Multi-antenna Gaussian Channels , 1999, Eur. Trans. Telecommun..

[16]  Goran M. Djuknic,et al.  Establishing wireless communications services via high-altitude aeronautical platforms: a concept whose time has come? , 1997, IEEE Commun. Mag..

[17]  Yang-Su Kim,et al.  Technology development for wireless communications system using stratospheric platform in Korea , 2002, The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications.

[18]  J. P. Woerdman,et al.  Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[19]  Tae-Chul Hong,et al.  Capacity of the WCDMA System Using High Altitude Platform Stations , 2004, IEEE International Symposium on Consumer Electronics, 2004.

[20]  David Grace,et al.  Performance of a Multiple HAP System Employing Multiple Polarization , 2010, Wirel. Pers. Commun..

[21]  S. Nordebo,et al.  Characterization of MIMO Antennas Using Spherical Vector Waves , 2006, IEEE Transactions on Antennas and Propagation.

[22]  Mohammad Ali Khalighi,et al.  Water filling capacity of Rayleigh MIMO channels , 2001, 12th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications. PIMRC 2001. Proceedings (Cat. No.01TH8598).

[23]  Abbas Mohammed,et al.  A Study of Multiple Access Schemes for Wireless Sensor Network Applications via High Altitude Systems , 2009, VTC Spring 2009 - IEEE 69th Vehicular Technology Conference.

[24]  Ryu Miura,et al.  Advanced Communication Techniques and Applications for High-Altitude Platforms , 2008, EURASIP J. Wirel. Commun. Netw..

[25]  István Frigyes,et al.  SAT02-6: Application of the 3D Polarization Concept in Satellite MIMO Systems , 2006, IEEE Globecom 2006.

[26]  H. Then,et al.  Utilization of photon orbital angular momentum in the low-frequency radio domain. , 2007, Physical review letters.

[27]  L. Marrucci,et al.  Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. , 2006, Physical review letters.

[28]  Beza Negash Getu,et al.  The MIMO cube - a compact MIMO antenna , 2002, The 5th International Symposium on Wireless Personal Multimedia Communications.

[29]  M J Padgett,et al.  Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner. , 1997, Optics letters.