Circuits and Antennas Incorporating Gallium-Based Liquid Metal

This article reviews the application and technology advancement of gallium (Ga)-based liquid metal (LM) in high-frequency circuits and antennas. It discusses the material properties of common LMs, the fluidic channels used to contain LM and their manufacturing techniques, and the actuation techniques, which are all critical for the design and implementation of LM-based devices. LM’s fluidic and pliable nature, together with its excellent electrical, thermal, and rheological (i.e., fluid flow) properties, provides some unique and innovative solutions to flexible/wearable electronics, reconfigurable circuits, and antennas. This article provides a comprehensive review of a wide range of LM-enabled high-frequency circuits and antennas, including interconnects and transitions, reconfigurable passive circuits (such as resonators, filters, and couplers), switches, phase shifters, reconfigurable antennas, flexible and wearable antennas, and metamaterials (i.e., periodic materials with properties not found in nature). This article presents various design concepts and implementation techniques, highlights key capabilities, and discusses the challenges and opportunities with the use of Ga-based LM materials.

[1]  Shiyang Tang,et al.  Liquid Metal-Based Tunable Linear Phase Shifters With Low Insertion Loss, High Phase Resolution, and Low Dispersion , 2023, IEEE Transactions on Microwave Theory and Techniques.

[2]  Bradley Dirks,et al.  The minimal exponent and k-rationality for local complete intersections , 2022, Journal de l’École polytechnique — Mathématiques.

[3]  C. Majidi,et al.  3D Printing of Liquid Metal Embedded Elastomers for Soft Thermal and Electrical Materials. , 2022, ACS applied materials & interfaces.

[4]  C. Majidi,et al.  Nanowire-assisted freestanding liquid metal thin-film patterns for highly stretchable electrodes on 3D surfaces , 2022, npj Flexible Electronics.

[5]  S. Ko,et al.  Monolithically Programmed Stretchable Conductor by Laser-Induced Entanglement of Liquid Metal and Metallic Nanowire Backbone. , 2022, Small.

[6]  M. Wang,et al.  Liquid Metal-Embedded Layered-PDMS Antenna for Flexible and Conformal Applications , 2022, Frontiers in Physics.

[7]  Xueqing Yan,et al.  Polarization- and Frequency-Reconfigurable Patch Antenna Using Gravity-Controlled Liquid Metal , 2022, IEEE Transactions on Circuits and Systems II: Express Briefs.

[8]  J. Kelly,et al.  Reconfigurable Antenna Using Liquid Metal Vias , 2021, 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI).

[9]  R. Mittra,et al.  Reconfigurable Liquid Metal-Based SIW Phase Shifter , 2021, IEEE Transactions on Microwave Theory and Techniques.

[10]  K. Khoshmanesh,et al.  Gallium‐Based Liquid Metal Reaction Media for Interfacial Precipitation of Bismuth Nanomaterials with Controlled Phases and Morphologies , 2021, Advanced Functional Materials.

[11]  Jacob J. Adams,et al.  An UHF Reconfigurable Liquid-Metal Monopole Antenna Based on a 2-D Surface , 2021, IEEE Transactions on Components, Packaging and Manufacturing Technology.

[12]  Sheikh Dobir Hossain,et al.  Flexible EGaIn Liquid Metal Microstrip Patch Antenna Based Pressure Sensor , 2021, 2021 IEEE Sensors.

[13]  M. Su,et al.  Frequency-Reconfigurable Liquid Metal Magnetoelectric Dipole Antenna , 2021, IEEE Antennas and Wireless Propagation Letters.

[14]  Rui Guo,et al.  Printed Transformable Liquid-Metal Metamaterials and Their Application in Biomedical Sensing , 2021, Sensors.

[15]  Ishan D. Joshipura,et al.  Are Contact Angle Measurements Useful for Oxide-Coated Liquid Metals? , 2021, Langmuir : the ACS journal of surfaces and colloids.

[16]  J. Kelly,et al.  Radiation Pattern Reconfigurable Antenna Using Liquid Metal Vias , 2021, 2021 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC).

[17]  Y. Liu,et al.  Low-RCS Antenna Array With Switchable Scattering Patterns Employing Microfluidic Liquid Metal Alloy-Based Metasurface , 2021, IEEE Transactions on Antennas and Propagation.

[18]  C. Majidi,et al.  Recent advances in liquid-metal-based wearable electronics and materials , 2021, iScience.

[19]  M. Hashimoto,et al.  Ultra‐Deformable and Tissue‐Adhesive Liquid Metal Antennas with High Wireless Powering Efficiency , 2021, Advanced materials.

[20]  Run‐Wei Li,et al.  A flexible metamaterial based on liquid metal patterns embedded in magnetic medium for lightweight microwave absorber , 2021 .

[21]  M. Zarifi,et al.  Microwave resonator array with liquid metal selection for narrow band material sensing , 2021, Scientific Reports.

[22]  Hai‐feng Zhang,et al.  A gravity field tailored metamaterial absorber containing liquid metal for polarization separation , 2021 .

[23]  J. Mikkelsen,et al.  Pattern-Reconfigurable Yagi–Uda Antenna Based on Liquid Metal , 2021, IEEE Antennas and Wireless Propagation Letters.

[24]  Guan-Long Huang,et al.  The Design and Manufacturing Process of an Electrolyte-Free Liquid Metal Frequency-Reconfigurable Antenna , 2021, Sensors.

[25]  Ting Qian Reconfigurable Metasurface Antenna Based on the Liquid Metal for Flexible Scattering Fields Manipulation , 2021, Micromachines.

[26]  A. Grumezescu,et al.  Fabrication and Applications of Microfluidic Devices: A Review , 2021, International journal of molecular sciences.

[27]  Zhiping Yin,et al.  Liquid metal-based metamaterial with high-temperature sensitivity: Design and computational study , 2021, Open Physics.

[28]  M. Zhang,et al.  Liquid Metal Based Flexible and Implantable Biosensors , 2020, Biosensors.

[29]  Sungjoon Lim,et al.  A multiple liquid metal switching mechanism in a single flow microfluidic channel as a reconfigurable bandpass filter , 2020 .

[30]  J. Negrón,et al.  Robust output regulation of the linearized Boussinesq equations with boundary control and observation , 2020, Mathematics of Control, Signals, and Systems.

[31]  R. Harne,et al.  Liquid metal microchannels as digital sensors in mechanical metamaterials , 2020, Extreme Mechanics Letters.

[32]  Jian Dong,et al.  A 3D printed dual-band antenna using liquid metal for wearable bracelets communications , 2020, 2020 IEEE MTT-S International Wireless Symposium (IWS).

[33]  Zhaohui Li,et al.  A high-efficient tunable liquid metal-based electromagnetic absorbing metamaterial , 2020, Journal of Materials Science: Materials in Electronics.

[34]  Michael J. Christoe,et al.  Pulsing Liquid Alloys for Nanomaterials Synthesis. , 2020, ACS nano.

[35]  Lining Sun,et al.  Programmable Digital Liquid Metal Droplets in Reconfigurable Magnetic Fields. , 2020, ACS applied materials & interfaces.

[36]  M. Lanagan,et al.  Highly stretchable and mechanically tunable antennas based on three-dimensional liquid metal network , 2020 .

[37]  Jacob J. Adams,et al.  Planar 2-D Beam Steering Antenna Using Liquid Metal Parasitics , 2020, IEEE Transactions on Antennas and Propagation.

[38]  Hongyuan Jiang,et al.  Pumping of Ionic Liquids by Liquid Metal‐Enabled Electrocapillary Flow under DC‐Biased AC Forcing , 2020, Advanced Materials Interfaces.

[39]  S. Gao,et al.  A Polarization-Reconfigurable Wideband High-Gain Antenna Using Liquid Metal Tuning , 2020, IEEE Transactions on Antennas and Propagation.

[40]  Y. Rahmat-Samii,et al.  3-D Printed Microfluidics Channelizing Liquid Metal for Multipolarization Reconfigurable Extended E-Shaped Patch Antenna , 2020, IEEE Transactions on Antennas and Propagation.

[41]  Ying Liu,et al.  A Frequency- and Polarization-Reconfigurable Slot Antenna Using Liquid Metal , 2020, IEEE Transactions on Antennas and Propagation.

[42]  M. Zarifi,et al.  Wideband Tunable Modified Split Ring Resonator Structure Using Liquid Metal and 3-D Printing , 2020, IEEE Microwave and Wireless Components Letters.

[43]  M. Dickey,et al.  Attributes, Fabrication, and Applications of Gallium‐Based Liquid Metal Particles , 2020, Advanced science.

[44]  Veena Misra,et al.  Flexible thermoelectric generators for body heat harvesting – Enhanced device performance using high thermal conductivity elastomer encapsulation on liquid metal interconnects , 2020 .

[45]  Jing Liu,et al.  Advances in Liquid Metal-Enabled Flexible and Wearable Sensors , 2020, Micromachines.

[46]  Weihua Li,et al.  Modeling and Motion Control of a Liquid Metal Droplet in a Fluidic Channel , 2020, IEEE/ASME Transactions on Mechatronics.

[47]  R. Mittra,et al.  Liquid Metal Bandwidth-Reconfigurable Antenna , 2020, IEEE Antennas and Wireless Propagation Letters.

[48]  Long Teng,et al.  Robust, multiscale liquid-metal patterning enabled by a sacrificial sealing layer for flexible and wearable wireless powering , 2019, Journal of Materials Chemistry C.

[49]  Adam T Woolley,et al.  Microfluidics: Innovations in Materials and Their Fabrication and Functionalization. , 2019, Analytical chemistry.

[50]  D. Psychogiou,et al.  Widely-Reconfigurable 2.5:1 Coaxial-Cavity Resonators Using Actuated Liquid-Metal Posts , 2019, 2019 49th European Microwave Conference (EuMC).

[51]  H. Cui,et al.  Liquid metal metasurface for flexible beam-steering. , 2019, Optics express.

[52]  W. Shiroma,et al.  Pixelated dual‐dipole antenna using electrically actuated liquid metal , 2019, Electronics Letters.

[53]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[54]  Mohit Pandey,et al.  Additive manufacturing as an emerging technology for fabrication of microelectromechanical systems (MEMS) , 2019, Journal of Micromanufacturing.

[55]  Sungjoon Lim,et al.  Liquid‐metal‐fluidically polarization reconfigurable microstrip patch antenna , 2019, Microwave and Optical Technology Letters.

[56]  H. Sigmarsson,et al.  Continuously-Tunable Substrate Integrated Waveguide Bandpass Filter Actuated by Liquid Metal , 2019, 2019 IEEE MTT-S International Microwave Symposium (IMS).

[57]  C. O. Chui,et al.  Wideband Frequency Reconfigurable Patch Antenna With Switchable Slots Based on Liquid Metal and 3-D Printed Microfluidics , 2019, IEEE Transactions on Antennas and Propagation.

[58]  J. Kelly,et al.  A Polarization-Reconfigurable Glass Dielectric Resonator Antenna Using Liquid Metal , 2019, IEEE Transactions on Antennas and Propagation.

[59]  Wei Gao,et al.  Flexible Electronics toward Wearable Sensing. , 2019, Accounts of chemical research.

[60]  J. Xu,et al.  Realization of switchable EIT metamaterial by exploiting fluidity of liquid metal. , 2019, Optics express.

[61]  Arim Ha,et al.  Beamwidth Control of an Impulse Radiating Antenna Using a Liquid Metal Reflector , 2019, IEEE Antennas and Wireless Propagation Letters.

[62]  Huanyu Cheng,et al.  Recent Development of Flexible and Stretchable Antennas for Bio-Integrated Electronics , 2018, Sensors.

[63]  W. Shiroma,et al.  A Polarization-Reconfigurable Antipodal Dipole Antenna Using Liquid Metal , 2018, 2018 Asia-Pacific Microwave Conference (APMC).

[64]  Weihua Li,et al.  Unconventional locomotion of liquid metal droplets driven by magnetic fields. , 2018, Soft matter.

[65]  I. F. da Costa,et al.  Millimeter Wave Beam Steerable/Reconfigurable Liquid Metal Array Antenna , 2018, 2018 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC).

[66]  J. Kelly,et al.  Reconfigurable 26GHz Liquid Metal Antenna Capable of Low Loss Continuous Beam Steering , 2018, 2018 IEEE Conference on Antenna Measurements & Applications (CAMA).

[67]  Sungjoon Lim,et al.  Microfluidically Frequency-Reconfigurable Quasi-Yagi Dipole Antenna , 2018, Sensors.

[68]  M. Tong,et al.  A Novel Reconfigurable Liquid Metal Antenna Controlled by an Impressed Voltage , 2018, 2018 Progress in Electromagnetics Research Symposium (PIERS-Toyama).

[69]  K. Tong,et al.  Fluid Switch for Radiation Pattern Reconfigurable Antenna , 2018, 2018 IEEE International Workshop on Electromagnetics:Applications and Student Innovation Competition (iWEM).

[70]  Michelle C. Yuen,et al.  Laser Sintering of Liquid Metal Nanoparticles for Scalable Manufacturing of Soft and Flexible Electronics. , 2018, ACS applied materials & interfaces.

[71]  C. Lim,et al.  Improving the Radiation Efficiency of Liquid Metal Antenna with Polarization Agility , 2018, 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting.

[72]  Sungjoon Lim,et al.  A Multifunctional Reconfigurable Frequency-Selective Surface Using Liquid-Metal Alloy , 2018, IEEE Transactions on Antennas and Propagation.

[73]  K. Khoshmanesh,et al.  Liquid metals: fundamentals and applications in chemistry. , 2018, Chemical Society reviews.

[74]  G. Anitha,et al.  Miniaturized switched line MEMS phase shifter , 2018 .

[75]  Carmel Majidi,et al.  EGaIn–Metal Interfacing for Liquid Metal Circuitry and Microelectronics Integration , 2018 .

[76]  Joo Chuan Yeo,et al.  Design of a Reconfigurable Patch Antenna Using the Movement of Liquid Metal , 2018, IEEE Antennas and Wireless Propagation Letters.

[77]  H. Sigmarsson,et al.  Band-Reconfigurable Filter With Liquid Metal Actuation , 2018, IEEE Transactions on Microwave Theory and Techniques.

[78]  Yongle Wu,et al.  Wideband Pattern-Reconfigurable Cone Antenna Employing Liquid-Metal Reflectors , 2018, IEEE Antennas and Wireless Propagation Letters.

[79]  Shengli Zhou,et al.  Dispersed operating time control of a mechanical switch actuated by an ultrasonic motor , 2018 .

[80]  Michael B. Steer,et al.  Characterization of Intermodulation Distortion in Reconfigurable Liquid Metal Antennas , 2018, IEEE Antennas and Wireless Propagation Letters.

[81]  Shobhit K. Patel,et al.  Liquid metamaterial based microstrip antenna , 2018 .

[82]  Alan J. Michaels,et al.  Design and analysis of two-dimensional parasitic liquid metal monopole array , 2017, MILCOM 2017 - 2017 IEEE Military Communications Conference (MILCOM).

[83]  Alan J. Michaels,et al.  Design and analysis of dual helix liquid metal antenna , 2017, MILCOM 2017 - 2017 IEEE Military Communications Conference (MILCOM).

[84]  Mehmet C. Öztürk,et al.  Flexible thermoelectric generator using bulk legs and liquid metal interconnects for wearable electronics , 2017 .

[85]  M. Champion,et al.  Polarization Reconfigurable Antennas Using a Liquid Metal Switching Mechanism , 2017, 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting.

[86]  J. Kelly,et al.  Continuously tunable frequency reconfigurable liquid metal microstrip patch antenna , 2017, 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting.

[87]  Wenjing Su,et al.  Novel 3D printed liquid-metal-alloy microfluidics-based zigzag and helical antennas for origami reconfigurable antenna “trees” , 2017, 2017 IEEE MTT-S International Microwave Symposium (IMS).

[88]  H. Wong,et al.  A polarization-reconfigurable liquid dielectric resonator antenna with 3D printing fabrication , 2017, 2017 International Workshop on Electromagnetics: Applications and Student Innovation Competition.

[89]  Arnan Mitchell,et al.  Liquid metal enabled microfluidics. , 2017, Lab on a chip.

[90]  D. Chu,et al.  Design of liquid crystal based coplanar waveguide tunable phase shifter with no floating electrodes for 60–90 GHz applications , 2016, 2016 46th European Microwave Conference (EuMC).

[91]  M. Daneshmand,et al.  Microfluidically Reconfigurable Rectangular Waveguide Filter Using Liquid Metal Posts , 2016, IEEE Microwave and Wireless Components Letters.

[92]  Sungjoon Lim,et al.  Wideband-Switchable Metamaterial Absorber Using Injected Liquid Metal , 2016, Scientific Reports.

[93]  Jie Zhang,et al.  Self-propelled liquid metal motors steered by a magnetic or electrical field for drug delivery. , 2016, Journal of materials chemistry. B.

[94]  D. Sameoto,et al.  Fabrication methods and applications of microstructured gallium based liquid metal alloys , 2016 .

[95]  Dishit P. Parekh,et al.  3D printing of liquid metals as fugitive inks for fabrication of 3D microfluidic channels. , 2016, Lab on a chip.

[96]  A. Vorobyov,et al.  Liquid Metal based antenna for wearable electronic , 2016, 2016 10th European Conference on Antennas and Propagation (EuCAP).

[97]  Gokhan Mumcu,et al.  Microfluidically Reconfigured Wideband Frequency-Tunable Liquid-Metal Monopole Antenna , 2016, IEEE Transactions on Antennas and Propagation.

[98]  Jonathan H. Dang,et al.  Frequency-tunable patch antenna with liquid-metal-actuated loading slot , 2016 .

[99]  Kangwook Kim,et al.  Frequency tunable liquid metal planar inverted-F antenna , 2016 .

[100]  Sungjoon Lim,et al.  Frequency-Switchable Metamaterial Absorber Injecting Eutectic Gallium-Indium (EGaIn) Liquid Metal Alloy , 2015, Sensors.

[101]  Jonathan H. Dang,et al.  Liquid-metal frequency-reconfigurable slot antenna using air-bubble actuation , 2015 .

[102]  Sungjoon Lim,et al.  Flexible liquid metal-filled metamaterial absorber on polydimethylsiloxane (PDMS). , 2015, Optics express.

[103]  Kamran Entesari,et al.  Miniature and Reconfigurable CPW Folded Slot Antennas Employing Liquid-Metal Capacitive Loading , 2015, IEEE Transactions on Antennas and Propagation.

[104]  Gokhan Mumcu,et al.  Passive Feed Network Designs for Microfluidic Beam-Scanning Focal Plane Arrays and Their Performance Evaluation , 2015, IEEE Transactions on Antennas and Propagation.

[105]  Jacob J. Adams,et al.  A reconfigurable liquid metal antenna driven by electrochemically controlled capillarity , 2015 .

[106]  Jonathan H. Dang,et al.  Liquid-metal-based phase shifter with reconfigurable EBG filling factor , 2015, 2015 IEEE MTT-S International Microwave Symposium.

[107]  Aaron T. Ohta,et al.  A tunable x-band substrate integrated waveguide cavity filter using reconfigurable liquid-metal perturbing posts , 2015, 2015 IEEE MTT-S International Microwave Symposium.

[108]  A. Duwel,et al.  A miniature reconfigurable circularly polarized antenna using liquid microswitches , 2015, 2015 IEEE 16th Annual Wireless and Microwave Technology Conference (WAMICON).

[109]  Ishan D. Joshipura,et al.  Methods to pattern liquid metals , 2015 .

[110]  Michael D. Dickey,et al.  Recapillarity: Electrochemically Controlled Capillary Withdrawal of a Liquid Metal Alloy from Microchannels , 2015 .

[111]  A. Räisänen,et al.  Liquid metal patch antenna and antenna array for WLAN applications , 2014 .

[112]  Yongan Huang,et al.  Microfluidic serpentine antennas with designed mechanical tunability. , 2014, Lab on a chip.

[113]  Michael D. Dickey,et al.  Giant and switchable surface activity of liquid metal via surface oxidation , 2014, Proceedings of the National Academy of Sciences.

[114]  I. Kang,et al.  Electrocapillarity of an electrolyte solution in a nanoslit with overlapped electric double layer: continuum approach. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[115]  Sivaraman Guruswamy,et al.  Reconfigurable terahertz metamaterial device with pressure memory. , 2014, Optics express.

[116]  S. Tang,et al.  Liquid metal enabled pump , 2014, Proceedings of the National Academy of Sciences.

[117]  Aaron T. Ohta,et al.  Two-octave tunable liquid-metal monopole antenna , 2014 .

[118]  M. C. Jo,et al.  Microfluidic Based Ka-Band Beam-Scanning Focal Plane Array , 2013, IEEE Antennas and Wireless Propagation Letters.

[119]  Rebecca K. Kramer,et al.  Masked Deposition of Gallium‐Indium Alloys for Liquid‐Embedded Elastomer Conductors , 2013 .

[120]  Gregory H. Huff,et al.  Frequency reconfigurable patch antenna using liquid metal as switching mechanism , 2013 .

[121]  Aaron T. Ohta,et al.  A Liquid-Metal Monopole Array With Tunable Frequency, Gain, and Beam Steering , 2013, IEEE Antennas and Wireless Propagation Letters.

[122]  Sebastian Strunck,et al.  Continuously tunable phase shifters for phased arrays based on liquid crystal technology , 2013, 2013 IEEE International Symposium on Phased Array Systems and Technology.

[123]  Philippe Ferrari,et al.  Compact and Broadband Millimeter-Wave Electrically Tunable Phase Shifter Combining Slow-Wave Effect With Liquid Crystal Technology , 2013, IEEE Transactions on Microwave Theory and Techniques.

[124]  Yasin Damgaci,et al.  A frequency reconfigurable antenna based on digital microfluidics. , 2013, Lab on a chip.

[125]  Arnan Mitchell,et al.  Electrochemically induced actuation of liquid metal marbles. , 2013, Nanoscale.

[126]  Usung Park,et al.  Pneumatic RF MEMS switch using a liquid metal droplet , 2013 .

[127]  Gabriel M. Rebeiz,et al.  The Search for a Reliable MEMS Switch , 2013, IEEE Microwave Magazine.

[128]  Sanjay Raman,et al.  Liquid–Metal Vertical Interconnects for Flip Chip Assembly of GaAs C-Band Power Amplifiers Onto Micro-Rectangular Coaxial Transmission Lines , 2012, IEEE Journal of Solid-State Circuits.

[129]  Wyatt C. Nelson,et al.  Droplet Actuation by Electrowetting-on-Dielectric (EWOD): A Review , 2012 .

[130]  Louis Coryell,et al.  Advances in RF MEMS phase shifters from 15 GHz to 35 GHz , 2012, 2012 IEEE/MTT-S International Microwave Symposium Digest.

[131]  G. Lazzi,et al.  Flexible Liquid Metal Alloy (EGaIn) Microstrip Patch Antenna , 2012, IEEE Transactions on Antennas and Propagation.

[132]  Chang-Jin Kim,et al.  Characterization of Nontoxic Liquid-Metal Alloy Galinstan for Applications in Microdevices , 2012, Journal of Microelectromechanical Systems.

[133]  A. Guyette,et al.  Intrinsically Switched Varactor-Tuned Filters and Filter Banks , 2012, IEEE Transactions on Microwave Theory and Techniques.

[134]  L. Jofre,et al.  Circular Beam-Steering Reconfigurable Antenna With Liquid Metal Parasitics , 2012, IEEE Transactions on Antennas and Propagation.

[135]  M. Tentzeris,et al.  A wireless passive RCS-based temperature sensor using liquid metal and microfluidics technologies , 2011, 2011 41st European Microwave Conference.

[136]  Rolf Jakoby,et al.  Continuously tunable W-band phase shifter based on liquid crystals and MEMS technology , 2011, 2011 6th European Microwave Integrated Circuit Conference.

[137]  Kamran Ghorbani,et al.  A novel wideband variable coupler employing liquid metal , 2011, Asia-Pacific Microwave Conference 2011.

[138]  A. Mahanfar,et al.  A Reconfigurable Patch Antenna Using Liquid Metal Embedded in a Silicone Substrate , 2011, IEEE Transactions on Antennas and Propagation.

[139]  E. Rowe,et al.  Electrically and magnetically tunable phase shifters based on a barium strontium titanate-yttrium iron garnet layered structure , 2010 .

[140]  C. Kim,et al.  A Liquid–Solid Direct Contact Low-Loss RF Micro Switch , 2009, Journal of Microelectromechanical Systems.

[141]  A. Rydberg,et al.  Foldable and Stretchable Liquid Metal Planar Inverted Cone Antenna , 2009, IEEE Transactions on Antennas and Propagation.

[142]  Franco De Flaviis,et al.  A reconfigurable dual frequency switched beam antenna array and phase shifter using PIN diodes , 2009 .

[143]  Chang-Jin Kim,et al.  Microscale Liquid-Metal Switches—A Review , 2009, IEEE Transactions on Industrial Electronics.

[144]  P. Sen,et al.  A Fast Liquid-Metal Droplet Microswitch Using EWOD-Driven Contact-Line Sliding , 2009, Journal of microelectromechanical systems.

[145]  L C Cadwallader,et al.  GaInSn usage in the research laboratory. , 2008, The Review of scientific instruments.

[146]  T. Akın,et al.  A Monolithic Phased Array Using 3-bit Distributed RF MEMS Phase Shifters , 2008, IEEE Transactions on Microwave Theory and Techniques.

[147]  Liwei Lin,et al.  Microrelays With Bidirectional Electrothermal Electromagnetic Actuators and Liquid Metal Wetted Contacts , 2007, Journal of Microelectromechanical Systems.

[148]  D. Heo,et al.  A Novel SiGe PIN Diode SPST Switch for Broadband T/R Module , 2007, IEEE Microwave and Wireless Components Letters.

[149]  D. Peroulis,et al.  Electrostatic Liquid-Metal Capacitive Shunt MEMS Switch , 2006, 2006 IEEE MTT-S International Microwave Symposium Digest.

[150]  I. Silverman,et al.  High heat flux accelerator targets cooling with liquid-metal jet impingement , 2005 .

[151]  P. Surmann,et al.  Voltammetric analysis using a self-renewable non-mercury electrode , 2005, Analytical and bioanalytical chemistry.

[152]  Y. Kaneko,et al.  High-reliability, high-performance RF micromachined switch using liquid metal , 2005, Journal of Microelectromechanical Systems.

[153]  Liwei Lin,et al.  Bi-directional electrothermal electromagnetic actuators , 2004, 17th IEEE International Conference on Micro Electro Mechanical Systems. Maastricht MEMS 2004 Technical Digest.

[154]  Hargsoon Yoon,et al.  CPW phase shifter using barium strontium titanate thin film on silicon substrate , 2003, IEEE Antennas and Propagation Society International Symposium. Digest. Held in conjunction with: USNC/CNC/URSI North American Radio Sci. Meeting (Cat. No.03CH37450).

[155]  A. Deleniv,et al.  Tunable ferroelectric filter-phase shifter , 2003, IEEE MTT-S International Microwave Symposium Digest, 2003.

[156]  T. Chio,et al.  Wideband RF photonic vector sum phase-shifter , 2003 .

[157]  G. Sakamoto,et al.  A SiGe MMIC 6-bit PIN diode phase shifter , 2002, IEEE Microwave and Wireless Components Letters.

[158]  S. Cho,et al.  Low voltage electrowetting-on-dielectric , 2002 .

[159]  Guan-Leng Tan,et al.  RF MEMS phase shifters: design and applications , 2002 .

[160]  Keiichi Ohata,et al.  Design and performance of a Ka-band monolithic phase shifter utilizing nonresonant FET switches , 2000 .

[161]  A. S. Pavlov,et al.  Application of ferroelectrics in phase shifter design , 2000, 2000 IEEE MTT-S International Microwave Symposium Digest (Cat. No.00CH37017).

[162]  A. Mitchell,et al.  A novel wide-band tunable RF phase shifter using a variable optical directional coupler , 1999 .

[163]  Chang-Jin Kim,et al.  Lateral polysilicon microrelays with a mercury microdrop contact , 1998, IEEE Trans. Ind. Electron..

[164]  Y.C. Lee,et al.  RF and mechanical characterization of flip-chip interconnects in CPW circuits with underfill , 1998, 1998 IEEE MTT-S International Microwave Symposium Digest (Cat. No.98CH36192).

[165]  C. Kim,et al.  A liquid-filled microrelay with a moving mercury microdrop , 1997 .

[166]  N. Alexopoulos,et al.  Planar microwave integrated phase-shifter design with high purity ferroelectric material , 1997 .

[167]  C. Kim,et al.  A micromechanical relay with a thermally-driven mercury micro-drop , 1996, Proceedings of Ninth International Workshop on Micro Electromechanical Systems.

[168]  S. D. Pritchett,et al.  A low loss monolithic five-bit PIN diode phase shifter , 1990, IEEE International Digest on Microwave Symposium.

[169]  S. Tang,et al.  Liquid Metals as Soft Electromechanical Actuators , 2021, Materials Advances.

[170]  C. Christodoulou,et al.  A Stretchable Liquid Metal Coaxial Phase Shifter , 2021, IEEE Open Journal of Antennas and Propagation.

[171]  Wayne A. Shiroma,et al.  Liquid-Metal Nodal Sheet for Reconfigurable Devices and Circuits , 2020, IEEE Access.

[172]  R. Mittra,et al.  University of Birmingham Gallium-based liquid metal substrate integrated waveguide switches , 2020 .

[173]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[174]  Sungjoon Lim,et al.  Liquid-Metal-Fluidically Switchable Metasurface for Broadband and Polarization-Insensitive Absorption , 2018, IEEE Access.

[175]  Aaron T. Ohta,et al.  An Electrically Actuated DC-to-11-GHz Liquid-Metal Switch , 2018, IEEE Access.

[176]  Juseop Lee,et al.  Band-Switchable Substrate-Integrated Waveguide Resonator and Filter , 2018, IEEE Transactions on Microwave Theory and Techniques.

[177]  Ping Jack Soh,et al.  Flexible Dual-Band AMC-Backed PDMS Antenna with Fluidic Metal for WBAN and WLAN , 2018 .

[178]  Jiming Song,et al.  Directivity-Reconfigurable Wideband Two-Arm Spiral Antenna , 2017, IEEE Antennas and Wireless Propagation Letters.

[179]  M. Daneshmand,et al.  A K-Band Reflective Waveguide Switch Using Liquid Metal , 2017, IEEE Antennas and Wireless Propagation Letters.

[180]  Jeonghyun Kim,et al.  A skin-attachable, stretchable integrated system based on liquid GaInSn for wireless human motion monitoring with multi-site sensing capabilities , 2017 .

[181]  Jacob J. Adams,et al.  A Compound Frequency- and Polarization- Reconfigurable Crossed Dipole Using Multidirectional Spreading of Liquid Metal , 2017, IEEE Antennas and Wireless Propagation Letters.

[182]  Robert Staraj,et al.  Realization of 3-D Flexible Antennas Using Liquid Metal and Additive Printing Technologies , 2017, IEEE Antennas and Wireless Propagation Letters.

[183]  Gokhan Mumcu,et al.  Microfluidically Controlled Frequency-Tunable Monopole Antenna for High-Power Applications , 2016, IEEE Antennas and Wireless Propagation Letters.

[184]  Kamran Entesari,et al.  A Microfluidically Reconfigurable Dual-Band Slot Antenna With a Frequency Coverage Ratio of 3:1 , 2016, IEEE Antennas and Wireless Propagation Letters.

[185]  Ronan Sauleau,et al.  Contactless Microstrip Transition for Flexible Microfluidic Circuits and Antennas , 2015, IEEE Antennas and Wireless Propagation Letters.

[186]  Guocheng Shao,et al.  new fabrication method for all-PDMS waveguides , 2013 .

[187]  W. Marsden I and J , 2012 .

[188]  Chang-Jin Kim,et al.  A fast liquid-metal droplet switch using EWOD , 2007, 2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS).

[189]  D. van der Weide,et al.  A PIN diode controlled variable attenuator using a 0-dB branch-line coupler , 2005, IEEE Microwave and Wireless Components Letters.

[190]  E. Ivers-Tiffée,et al.  INVESTIGATION OF BARIUM STRONTIUM TITANATE THICK FILMS FOR TUNABLE PHASE SHIFTERS , 2001 .