Direct dating of the Sete Lagoas cap carbonate (Bambuí Group, Brazil) and implications for the Neoproterozoic glacial events

The end of the Neoproterozoic is punctuated by glacial deposition, but the chronology of these deposits is hindered presently by the paucity of geochronological data. Here, we present new radiometric dating for the basal Sete Lagoas cap carbonate deposits that overlie glacial units in the São Francisco craton. Six samples from aragonite‐pseudomorph crystal‐rich facies, showing pristine textures and constant 87Sr/86Sr ratios around 0.7075, yielded a Pb–Pb isochron age of 740 ± 22 Ma, which is interpreted as the depositional age for these remarkably preserved rocks. This age can be used to infer a low‐to‐moderate palaeolatitude of 20–30° for carbonate (and glacial) deposition. In addition, as it overlaps the ages obtained for the oldest Neoproterozoic glacial successions, our result reinforces the idea of a long‐standing ‘Sturtian’ interval, suggesting that this event represents either different discrete glaciations or a protracted event encompassing almost 80 Ma.

[1]  A. Maloof,et al.  Evolution of the 87Sr/86Sr composition of Neoproterozoic seawater , 2007 .

[2]  I. Fairchild,et al.  Neoproterozoic glaciation in the Earth System , 2007, Journal of the Geological Society.

[3]  M. Ader,et al.  Identification of a Sturtian cap carbonate in the Neoproterozoic Sete Lagoas carbonate platform, Bambuí Group, Brazil , 2007 .

[4]  S. S. Iyer,et al.  Chemostratigraphic correlation of Neoproterozoic successions in South America , 2007 .

[5]  B. Kendall,et al.  Re-Os geochronology of postglacial black shales in Australia: Constraints on the timing of “Sturtian” glaciation , 2006 .

[6]  E. Tohver,et al.  Paleomagnetic record of Africa and South America for the 1200-500 Ma interval, and evaluation of Rodinia and Gondwana assemblies , 2006 .

[7]  F. Corsetti,et al.  The biotic response to Neoproterozoic snowball Earth , 2006 .

[8]  G. Halverson A Neoproterozoic Chronology , 2006 .

[9]  F. Corsetti,et al.  On Neoproterozoic Cap Carbonates as Chronostratigraphic Markers , 2006 .

[10]  A. J. Kaufman,et al.  Biomarker Evidence for Photosynthesis During Neoproterozoic Glaciation , 2005, Science.

[11]  D. Schrag,et al.  Toward a Neoproterozoic composite carbon-isotope record , 2005 .

[12]  Wei Wang,et al.  U-Pb Ages from the Neoproterozoic Doushantuo Formation, China , 2005, Science.

[13]  L. P. Black,et al.  U-Pb zircon age constraints on late Neoproterozoic glaciation in Tasmania , 2004 .

[14]  P. Link,et al.  U-Pb SHRIMP ages of Neoproterozoic (Sturtian) glaciogenic Pocatello Formation, southeastern Idaho , 2004 .

[15]  K. Hoffmann,et al.  U-Pb zircon date from the Neoproterozoic Ghaub Formation, Namibia: Constraints on Marinoan glaciation , 2004 .

[16]  M. Babinski,et al.  Paleomagnetism and geochronology of the Bebedouro cap carbonate: evidence for continental-scale Cambrian remagnetization in the São Francisco craton, Brazil , 2004 .

[17]  J. Aleinikoff,et al.  SHRIMP U-Pb geochronology of Neoproterozoic Windermere Supergroup, central Idaho: Implications for rifting of western Laurentia and synchroneity of Sturtian glacial deposits , 2003 .

[18]  B. Schaefer,et al.  Re–Os isotopic age constraints on deposition in the Neoproterozoic Amadeus Basin: implications for the ‘Snowball Earth’ , 2001, Journal of the Geological Society.

[19]  K. Ludwig User's Manual for Isoplot 3.00 - A Geochronological Toolkit for Microsoft Excel , 2003 .

[20]  D. Schrag,et al.  The snowball Earth hypothesis: testing the limits of global change , 2002 .

[21]  R. Key,et al.  The western arm of the Lufilian Arc in NW Zambia and its potential for copper mineralization , 2001 .

[22]  A. Nutman,et al.  Constraining the age of Neoproterozoic glaciation in eastern Brazil: first U-Pb (shrimp) data of detrital zircons , 2000 .

[23]  M. Ernesto,et al.  Simultaneous remagnetization and U–Pb isotope resetting in Neoproterozoic carbonates of the São Francisco craton, Brazil , 2000 .

[24]  A. J. Kaufman,et al.  The Sr, C and O isotopic evolution of Neoproterozoic seawater , 1999 .

[25]  F. Chemale,et al.  Pb-Pb dating and Pb isotope geochemistry of Neoproterozoic carbonate rocks from the Sao Francisco basin, Brazil: ˜ implications for the mobility of Pb isotopes during tectonism and metamorphism , 1999 .

[26]  N. Christie‐Blick,et al.  Paleomagnetic polarity reversals in Marinoan (ca. 600 Ma) glacial deposits of Australia: Implications for the duration of low-latitude glaciation in Neoproterozoic time , 1999 .

[27]  K. Hoffmann,et al.  Two or four Neoproterozoic glaciations , 1998 .

[28]  A. J. Kaufman,et al.  Isotopes, ice ages, and terminal Proterozoic earth history. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[29]  U. Klötzli,et al.  New Pb-Pb Single Zircon Age Constraints on the Timing of Neoproterozoic Glaciation and Continental Break-up in Namibia , 1996, The Journal of Geology.

[30]  C. Isachsen,et al.  Precise U-Pb zircon ages for early Damaran magmatism in the Summas Mountains and Welwitschia Inlier, northern Damara belt, Namibia , 1996 .

[31]  J. Meert Paleomagnetic investigation of the Neoproterozoic Gagwe lavas and Mbozi complex, Tanzania and the assembly of Gondwana , 1995 .

[32]  S. S. Iyer,et al.  Highly 13C-enriched carbonate and organic matter in the Neoproterozoic sediments of the BambuíGroup, Brazil , 1995 .

[33]  B. Jahn,et al.  PbPb and UPb geochronology of carbonate rocks: an assessment☆ , 1994 .

[34]  A. Hoppe,et al.  Late Proterozoic aragonitic cement crusts, Bambuí Group, Minas Gerais, Brazil , 1990 .

[35]  A. Hoppe,et al.  Late Proterozoic glaciation in central-eastern Brazil: Synthesis and model , 1988 .

[36]  M. Mcwilliams,et al.  Paleomagnetism and tectonic evolution of the Pan‐African Damara Belt, southern Africa , 1981 .