Mineralogical characterization of potential targets for the ASTEX mission scenario

[1]  Michael J. Gaffey,et al.  Mineralogy of Asteroids , 2011 .

[2]  M. Gaffey,et al.  First fragment of Asteroid 4 Vesta's mantle detected , 2011 .

[3]  Harry Y. McSween,et al.  A coordinated spectral, mineralogical, and compositional study of ordinary chondrites , 2010 .

[4]  Lance A. M. Benner,et al.  A radar survey of M- and X-class asteroids II. Summary and synthesis , 2010 .

[5]  A. Harris,et al.  ASTEX: An in situ exploration mission to two near-Earth asteroids , 2010 .

[6]  Richard P. Binzel,et al.  Pyroxene mineralogies of near‐Earth vestoids , 2009 .

[7]  Hiroshi Terada,et al.  Albedo, Size, and Surface Characteristics of Hayabusa-2 Sample-Return Target 162173 1999 JU3 from AKARI , 2008 .

[8]  M. Shepard,et al.  Near-Earth asteroid surface roughness depends on compositional class , 2008 .

[9]  M. Darby Dyar,et al.  Characterization of the 1.2 μm M1 pyroxene band: Extracting cooling history from near‐IR spectra of pyroxenes and pyroxene‐dominated rocks , 2008 .

[10]  Faith Vilas,et al.  SPECTRAL CHARACTERISTICS OF HAYABUSA 2 NEAR-EARTH ASTEROID TARGETS 162173 1999 JU3 AND 2001 QC34 , 2008 .

[11]  J. Sunshine,et al.  Olivine‐dominated asteroids and meteorites: Distinguishing nebular and igneous histories , 2007 .

[12]  M. Darby Dyar,et al.  Spectroscopy of synthetic Mg‐Fe pyroxenes I: Spin‐allowed and spin‐forbidden crystal field bands in the visible and near‐infrared , 2007 .

[13]  Richard P. Binzel,et al.  Observed spectral properties of near-Earth objects: results for population distribution, source regions, and space weathering processes , 2004 .

[14]  John T. Rayner,et al.  Spextool: A Spectral Extraction Package for SpeX, a 0.8–5.5 Micron Cross‐Dispersed Spectrograph , 2004 .

[15]  P. Hardersen Near-IR reflectance spectroscopy of asteroids and study of the thermal history of the main asteroid belt , 2003 .

[16]  J. Sunshine,et al.  Deriving asteroid mineralogies from reflectance spectra: Implications for the MUSES-C target asteroid , 2003 .

[17]  John T. Rayner,et al.  SpeX: A Medium‐Resolution 0.8–5.5 Micron Spectrograph and Imager for the NASA Infrared Telescope Facility , 2003 .

[18]  Richard P. Binzel,et al.  Spectral Properties of Near-Earth Objects: Palomar and IRTF Results for 48 Objects Including Spacecraft Targets (9969) Braille and (10302) 1989 ML , 2001 .

[19]  H. Takeda Mineralogical records of early planetary processes on the howardite, eucrite, diogenite parent body with reference to Vesta , 1997 .

[20]  A. Rubin Mineralogy of meteorite groups , 1997 .

[21]  Jennifer L. Piatek,et al.  Mineralogical Variations within the S-Type Asteroid Class , 1993 .

[22]  G. J. Taylor,et al.  Asteroid differentiation - Pyroclastic volcanism to magma oceans , 1993 .

[23]  N. Boynton,et al.  Minor/major element variation within and among diogenite and howardite orthopyroxenite groups , 1992 .

[24]  Michael J. Gaffey,et al.  Pyroxene spectroscopy revisited - Spectral-compositional correlations and relationship to geothermometry , 1991 .

[25]  W. Ridley,et al.  Relation of the spectroscopic reflectance of olivine to mineral chemistry and some remote sensing implications , 1987 .

[26]  Michael J. Gaffey,et al.  Calibrations of phase abundance, composition, and particle size distribution for olivine-orthopyroxene mixtures from reflectance spectra , 1986 .

[27]  R. N. Clark,et al.  A LARGE-SCALE INTERACTIVE ONE-DIMENSIONAL ARRAY PROCESSING SYSTEM , 1980 .

[28]  John B. Adams,et al.  Visible and near‐infrared diffuse reflectance spectra of pyroxenes as applied to remote sensing of solid objects in the solar system , 1974 .

[29]  Timothy J. McCoy,et al.  Non-chondritic meteorites from asteroidal bodies , 1998 .

[30]  Basaltic Volcanism Study Basaltic volcanism on the terrestrial planets , 1981 .

[31]  J. Papike Pyroxene mineralogy of the Moon and meteorites , 1980 .

[32]  Roger G. Burns,et al.  Mineralogical applications of crystal field theory , 1970 .