Approximation with Kronecker Products

Let A be an m-by-n matrix with m=m1m2 and n=n1n2. We consider the problem of finding (mathematical formula omitted) so that (mathematical formula omitted) is minimized. This problem can be solved by computing the largest singular value and associated singular vectors of a permuted version of A. If A is symmetric, definite, non-negative, or banded, then the minimizing B and C are similarly structured. The idea of using Kronecker product preconditioners is briefly discussed.

[1]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[2]  Antony Jameson,et al.  Solution of the Equation $AX + XB = C$ by Inversion of an $M \times M$ or $N \times N$ Matrix , 1968 .

[3]  J. Kane,et al.  Kronecker Matrices, Computer Implementation, and Generalized Spectra , 1970, JACM.

[4]  G. Golub Some modified eigenvalue problems , 1971 .

[5]  R. Barham,et al.  An Algorithm for Least Squares Estimation of Nonlinear Parameters When Some of the Parameters Are Linear , 1972 .

[6]  Richard H. Bartels,et al.  Algorithm 432 [C2]: Solution of the matrix equation AX + XB = C [F4] , 1972, Commun. ACM.

[7]  V. Pereyra,et al.  Efficient Computer Manipulation of Tensor Products with Applications to Multidimensional Approximation , 1973 .

[8]  Linda Kaufman,et al.  A Variable Projection Method for Solving Separable Nonlinear Least Squares Problems , 1974 .

[9]  Joe Brewer,et al.  Kronecker products and matrix calculus in system theory , 1978 .

[10]  G. Golub,et al.  A Hessenberg-Schur method for the problem AX + XB= C , 1979 .

[11]  Carl de Boor,et al.  Efficient Computer Manipulation of Tensor Products , 1979, TOMS.

[12]  Alexander Graham,et al.  Kronecker Products and Matrix Calculus: With Applications , 1981 .

[13]  S. R. Searle,et al.  The Vec-Permutation Matrix, the Vec Operator and Kronecker Products: A Review , 1981 .

[14]  Franklin T. Luk,et al.  A Block Lanczos Method for Computing the Singular Values and Corresponding Singular Vectors of a Matrix , 1981, TOMS.

[15]  S. R. Searle,et al.  On the history of the kronecker product , 1983 .

[16]  Willoughby,et al.  Lanczos Algorithms for Large Symmetric Eigenvalue Computations Vol. II Programs , 1984 .

[17]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[18]  J. Cullum,et al.  Lanczos algorithms for large symmetric eigenvalue computations , 1985 .

[19]  G. Golub,et al.  Block Preconditioning for the Conjugate Gradient Method , 1985 .

[20]  Don J. Lindler,et al.  N87-26543 BLOCK ITERATIVE RESTORATION OF ASTRONOMICAL IMAGES WITH THE MASSIVELY PARALLEL PROCESSOR , 2004 .

[21]  T. Chan An Optimal Circulant Preconditioner for Toeplitz Systems , 1988 .

[22]  Sanjit K. Mitra,et al.  Kronecker Products, Unitary Matrices and Signal Processing Applications , 1989, SIAM Rev..

[23]  Y. J. Tejwani,et al.  Robot vision , 1989, IEEE International Symposium on Circuits and Systems,.

[24]  R. W. Johnson,et al.  A methodology for designing, modifying, and implementing Fourier transform algorithms on various architectures , 1990 .

[25]  Chua-Huang Huang,et al.  Multilinear algebra and parallel programming , 1990, Proceedings SUPERCOMPUTING '90.

[26]  J. Mendel,et al.  Time and lag recursive computation of cumulants from a state-space model , 1990 .

[27]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[28]  C. Loan Computational Frameworks for the Fast Fourier Transform , 1992 .

[29]  R. Chan,et al.  A Family of Block Preconditioners for Block Systems , 1992, SIAM J. Sci. Comput..

[30]  D. Fausett,et al.  Large Least Squares Problems Involving Kronecker Products , 1994, SIAM J. Matrix Anal. Appl..