Approximation with Kronecker Products
暂无分享,去创建一个
[1] J. H. Wilkinson. The algebraic eigenvalue problem , 1966 .
[2] Antony Jameson,et al. Solution of the Equation $AX + XB = C$ by Inversion of an $M \times M$ or $N \times N$ Matrix , 1968 .
[3] J. Kane,et al. Kronecker Matrices, Computer Implementation, and Generalized Spectra , 1970, JACM.
[4] G. Golub. Some modified eigenvalue problems , 1971 .
[5] R. Barham,et al. An Algorithm for Least Squares Estimation of Nonlinear Parameters When Some of the Parameters Are Linear , 1972 .
[6] Richard H. Bartels,et al. Algorithm 432 [C2]: Solution of the matrix equation AX + XB = C [F4] , 1972, Commun. ACM.
[7] V. Pereyra,et al. Efficient Computer Manipulation of Tensor Products with Applications to Multidimensional Approximation , 1973 .
[8] Linda Kaufman,et al. A Variable Projection Method for Solving Separable Nonlinear Least Squares Problems , 1974 .
[9] Joe Brewer,et al. Kronecker products and matrix calculus in system theory , 1978 .
[10] G. Golub,et al. A Hessenberg-Schur method for the problem AX + XB= C , 1979 .
[11] Carl de Boor,et al. Efficient Computer Manipulation of Tensor Products , 1979, TOMS.
[12] Alexander Graham,et al. Kronecker Products and Matrix Calculus: With Applications , 1981 .
[13] S. R. Searle,et al. The Vec-Permutation Matrix, the Vec Operator and Kronecker Products: A Review , 1981 .
[14] Franklin T. Luk,et al. A Block Lanczos Method for Computing the Singular Values and Corresponding Singular Vectors of a Matrix , 1981, TOMS.
[15] S. R. Searle,et al. On the history of the kronecker product , 1983 .
[16] Willoughby,et al. Lanczos Algorithms for Large Symmetric Eigenvalue Computations Vol. II Programs , 1984 .
[17] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[18] J. Cullum,et al. Lanczos algorithms for large symmetric eigenvalue computations , 1985 .
[19] G. Golub,et al. Block Preconditioning for the Conjugate Gradient Method , 1985 .
[20] Don J. Lindler,et al. N87-26543 BLOCK ITERATIVE RESTORATION OF ASTRONOMICAL IMAGES WITH THE MASSIVELY PARALLEL PROCESSOR , 2004 .
[21] T. Chan. An Optimal Circulant Preconditioner for Toeplitz Systems , 1988 .
[22] Sanjit K. Mitra,et al. Kronecker Products, Unitary Matrices and Signal Processing Applications , 1989, SIAM Rev..
[23] Y. J. Tejwani,et al. Robot vision , 1989, IEEE International Symposium on Circuits and Systems,.
[24] R. W. Johnson,et al. A methodology for designing, modifying, and implementing Fourier transform algorithms on various architectures , 1990 .
[25] Chua-Huang Huang,et al. Multilinear algebra and parallel programming , 1990, Proceedings SUPERCOMPUTING '90.
[26] J. Mendel,et al. Time and lag recursive computation of cumulants from a state-space model , 1990 .
[27] Charles R. Johnson,et al. Topics in Matrix Analysis , 1991 .
[28] C. Loan. Computational Frameworks for the Fast Fourier Transform , 1992 .
[29] R. Chan,et al. A Family of Block Preconditioners for Block Systems , 1992, SIAM J. Sci. Comput..
[30] D. Fausett,et al. Large Least Squares Problems Involving Kronecker Products , 1994, SIAM J. Matrix Anal. Appl..