Chapter 8 Electronic and Optical Properties of III–V Nitride based Quantum Wells and Superlattices

Publisher Summary This chapter describes the electronic and optical properties of III–V nitride-based quantum wells and superlattices. Wide bandgap III–V nitrides—such as GaN, AlN, InN—and their alloys exhibit considerable hardness, high thermal conductivity, large bandgap energies, and both conduction and valence band offsets for carrier confinement. Consequently, III–V nitrides are attractive for potential optoelectronic device applications in the blue–green or near ultraviolet spectrum and for high power and high temperature microelectronic devices. The ability to grow alternating thin layers of slightly dissimilar semiconductors, with each individual layer maintaining its crystallinity, results in a modulated conduction band profile along the growth direction. The chapter also emphasizes several discrepancies concerning the determination of some important parameters for the relevant bulk material, such as hole masses, bandgap energy bowing parameters, shear and deformation potentials, and band offsets, which are necessary for determining and understanding laser performance, such as gain and transparency, as well as the performance of electronic devices.

[1]  Gérald Bastard,et al.  Electronic states in semiconductor heterostructures , 1986 .

[2]  H. Morkoç,et al.  Optical transitions in GaN/AlxGa1−xN multiple quantum wells grown by molecular beam epitaxy , 1996 .

[3]  H. Morkoç,et al.  Theoretical investigation of electrical characteristics of AlGaN/GaN modulation doped field‐effect transistors , 1996 .

[4]  Arto V. Nurmikko,et al.  Low voltage, room temperature, ridge waveguide green-blue diode laser , 1993 .

[5]  Raphael Tsu,et al.  Superlattice and negative differential conductivity in semiconductors , 1970 .

[6]  R. Bechmann,et al.  Numerical data and functional relationships in science and technology , 1969 .

[7]  Fred H. Pollak,et al.  Piezo-Electroreflectance in Ge, GaAs, and Si , 1968 .

[8]  Michael Kunzer,et al.  Determination of the GaN/AlN band offset via the (/0) acceptor level of iron , 1994 .

[9]  H. Amano,et al.  Heteroepitaxial Growth and the Effect of Strain on the Luminescent Properties of GaN Films on (11 2̄0) and (0001) Sapphire Substrates , 1988 .

[10]  R. Davis III-V nitrides for electronic and optoelectronic applications , 1991, Proc. IEEE.

[11]  Kevin F. Brennan,et al.  Quantum Semiconductor Structures , 1992 .

[12]  J. Tsao,et al.  Erratum: Relaxation of strained‐layer semiconductor structures via plastic flow [Appl. Phys. Lett. 51, 1325 (1987)] , 1988 .

[13]  H. Morkoç,et al.  Quasi-Fermi level bending in MODFET's and its effect on FET transfer characteristics , 1985, IEEE Transactions on Electron Devices.

[14]  Takashi Mukai,et al.  Cd-Doped InGaN Films Grown on GaN Films , 1993 .

[15]  M. Craford LEDs challenge the incandescents , 1992, IEEE Circuits and Devices Magazine.

[16]  Hadis Morkoç,et al.  Valence-band discontinuity between GaN and AlN measured by x-ray photoemission spectroscopy , 1994 .

[17]  G. Bastard,et al.  Theoretical investigations of superlattice band structure in the envelope-function approximation , 1982 .

[18]  Gil,et al.  Oscillator strengths for optical band-to-band processes in GaN epilayers. , 1996, Physical review. B, Condensed matter.

[19]  Michael S. Shur,et al.  The influence of the strain‐induced electric field on the charge distribution in GaN‐AlN‐GaN structure , 1993 .

[20]  Hadis Morkoç,et al.  Valence‐band discontinuities of wurtzite GaN, AlN, and InN heterojunctions measured by x‐ray photoemission spectroscopy , 1996 .

[21]  Jeffrey Y. Tsao,et al.  Relaxation of strained-layer semiconductor structures via plastic flow , 1987 .

[22]  J. Waldrop,et al.  Measurement of AlN/GaN (0001) heterojunction band offsets by x‐ray photoemission spectroscopy , 1996 .

[23]  H. Morkoç,et al.  Properties of a Si doped GaN/AlGaN single quantum well , 1995 .

[24]  D. L. Smith,et al.  Strain-generated electric fields in [111] growth axis strained-layer superlattices , 1986 .

[25]  M. Balkanski,et al.  Structure de bandes des cristaux de type wurtzite. Transitions optiques intrinsèques dans le CdS , 1960 .

[26]  H. Morkoç,et al.  Binding energies of acceptors in GaAs- Al x Ga 1 − x As quantum wells , 1983 .

[27]  D. C. Reynolds,et al.  Ground and excited state exciton spectra from GaN grown by molecular‐beam epitaxy , 1996 .

[28]  Kim,et al.  Envelope-function formalism for valence bands in wurtzite quantum wells. , 1996, Physical review. B, Condensed matter.

[29]  Takashi Matsuoka,et al.  Photoluminescence of InGaN films grown at high temperature by metalorganic vapor phase epitaxy , 1991 .

[30]  Larry A. Coldren,et al.  Growth and characterization of bulk InGaN films and quantum wells , 1996 .

[31]  Lester F. Eastman,et al.  75 Å GaN channel modulation doped field effect transistors , 1996 .

[32]  Isamu Akasaki,et al.  Widegap Column‐ III Nitride Semiconductors for UV/Blue Light Emitting Devices , 1994 .

[33]  W. J. Choyke,et al.  Growth of AlN/GaN layered structures by gas source molecular‐beam epitaxy , 1990 .

[34]  D. G. Thomas,et al.  Theoretical and Experimental Effects of Spatial Dispersion on the Optical Properties of Crystals , 1963 .

[35]  Y.-F. Wu,et al.  Measured microwave power performance of AlGaN/GaN MODFET , 1996, IEEE Electron Device Letters.

[36]  Tanakorn Osotchan,et al.  Electron mobilities in gallium, indium, and aluminum nitrides , 1994 .

[37]  Michael S. Shur,et al.  Temperature activated conductance in GaN/AlGaN heterostructure field effect transistors operating at temperatures up to 300 °C , 1995 .

[38]  Yotaro Murakami,et al.  Preparation and optical properties of Ga1−xInxN thin films , 1975 .

[39]  Reuben T. Collins,et al.  Field‐effect transistor structure based on strain‐induced polarization charges , 1990 .

[40]  S. Nakamura,et al.  InGaN-Based Multi-Quantum-Well-Structure Laser Diodes , 1996 .

[41]  H. Amano,et al.  Shortest wavelength semiconductor laser diode , 1996 .

[42]  Suzuki,et al.  First-principles calculations of effective-mass parameters of AlN and GaN. , 1995, Physical review. B, Condensed matter.

[43]  Scheffler,et al.  Electronic and structural properties of GaN by the full-potential linear muffin-tin orbitals method: The role of the d electrons. , 1993, Physical review. B, Condensed matter.

[44]  B. Segall,et al.  Band-Offsets Between Group-III-Nitrides , 1994 .

[45]  Michael S. Shur,et al.  Short-channel GaN/AlGaN doped channel heterostructure field effect transistors with 36.1 cutoff frequency , 1996 .

[46]  Alan E. Bell,et al.  NEXT-GENERATION COMPACT DISCS , 1996 .

[47]  Umesh K. Mishra,et al.  VERY HIGH BREAKDOWN VOLTAGE AND LARGE TRANSCONDUCTANCE REALIZED ON GAN HETEROJUNCTION FIELD EFFECT TRANSISTORS , 1996 .

[48]  Isamu Akasaki,et al.  High‐quality GaInN/GaN multiple quantum wells , 1996 .

[49]  H. Morkoç,et al.  Strained layer heterostructures, and their applications to MODFETs, HBTs, and lasers , 1993, Proc. IEEE.

[50]  M. Khan,et al.  Photoluminescence characterization of AlGaN-GaN pseudomorphic quantum wells and calculation of strain induced bandgap shifts , 1992 .

[51]  Marc Ilegems,et al.  Absorption, Reflectance, and Luminescence of GaN Epitaxial Layers , 1971 .

[52]  H. Morkoç,et al.  Large‐band‐gap SiC, III‐V nitride, and II‐VI ZnSe‐based semiconductor device technologies , 1994 .

[53]  P. Asthana A long road to overnight success [optical disc storage] , 1994, IEEE Spectrum.

[54]  G. Osbourn Novel material properties of strained‐layer superlattices , 1985 .

[55]  D. Ahn Qualitative estimation of optical gain in wide‐band‐gap semiconductor quantum wells , 1994 .

[56]  Takashi Mukai,et al.  High-Quality InGaN Films Grown on GaN Films , 1992 .

[57]  Hadis Morkoç,et al.  Emerging gallium nitride based devices , 1995, Proc. IEEE.

[58]  H. Morkoç,et al.  GaN, AlN, and InN: A review , 1992 .

[59]  J. Orton Acceptor binding energy in GaN and related alloys , 1995 .

[60]  Y. P. Varshni Temperature dependence of the energy gap in semiconductors , 1967 .

[61]  Kazuo Nakajima,et al.  Fundamental absorption edge in GaN, InN and their alloys , 1972 .

[62]  M. Khan,et al.  Optical characterization of AlGaN-GaN-AlGaN quantum wells , 1992 .

[63]  Hadis Morkoç,et al.  High transconductance normally-off GaN MODFETs , 1995 .

[64]  S. Mohammad,et al.  High-Luminosity Blue and Blue-Green Gallium Nitride Light-Emitting Diodes , 1995, Science.

[65]  Shun Lien Chuang,et al.  k.p method for strained wurtzite semiconductors , 1996 .

[66]  H. Morkoc,et al.  On the collapse of drain I-V characteristics in modulation-doped FET's at cryogenic temperatures , 1984, IEEE Transactions on Electron Devices.

[67]  Takeshi Kuboyama,et al.  Properties of Ga1-xInxN Films Prepared by MOVPE , 1989 .

[68]  R. Kolbas,et al.  Photoluminescence characteristics of AlGaN‐GaN‐AlGaN quantum wells , 1990 .

[69]  T. Drummond,et al.  Modulation-doped GaAs/(Al,Ga)As heterojunction field-effect transistors: MODFETs , 1986 .

[70]  R. People,et al.  Calculation of critical layer thickness versus lattice mismatch for GexSi1−x/Si strained‐layer heterostructures , 1985 .

[71]  Chang Yc,et al.  Optical properties in modulation-doped GaAs-Ga1-xAlxAs quantum wells. , 1985 .

[72]  M. Klein Phonons in semiconductor superlattices , 1986 .

[73]  M.A. Khan,et al.  Microwave operation of GaN/AlGaN-doped channel heterostructure field effect transistors , 1996, IEEE Electron Device Letters.

[74]  Shuji Nakamura,et al.  InGaN Multi-Quantum-Well-Structure Laser Diodes with Cleaved Mirror Cavity Facets , 1996 .

[75]  C. Weisbuch,et al.  Quantum Semiconductor Structures: Fundamentals and Applications , 1991 .

[76]  H. Amano,et al.  P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI) , 1989 .

[77]  Takashi Mukai,et al.  High-Power GaN P-N Junction Blue-Light-Emitting Diodes , 1991 .

[78]  S. Nakamura,et al.  High-Brightness InGaN Blue, Green and Yellow Light-Emitting Diodes with Quantum Well Structures , 1995 .

[79]  A. Kuramata,et al.  High‐quality GaN epitaxial layer grown by metalorganic vapor phase epitaxy on (111) MgAl2O4 substrate , 1995 .

[80]  D. C. Reynolds,et al.  Sharp-line photoluminescence spectra from GaAs-GaAlAs multiple-quantum-well structures , 1984 .

[81]  Takeshi Uenoyama,et al.  Valence subband structures of wurtzite GaN/AlGaN quantum wells , 1995 .

[82]  Heinrich,et al.  Deep-level impurities: A possible guide to prediction of band-edge discontinuities in semiconductor heterojunctions. , 1985, Physical review letters.

[83]  Shuji Nakamura,et al.  InGaN multi‐quantum‐well structure laser diodes grown on MgAl2O4 substrates , 1996 .

[84]  T. Matsuoka,et al.  Wide-gap semiconductor InGaN and InGaAln grown by MOVPE , 1992 .

[85]  Inspec,et al.  Properties of group III nitrides , 1994 .

[86]  H. Morkoç,et al.  Photoluminescence characterization of the quantum well structure and influence of optical illumination on the electrical performance of AlGaN/GaN modulation‐doped field‐effect transistors , 1996 .

[87]  J. W. Matthews,et al.  Defects in epitaxial multilayers: III. Preparation of almost perfect multilayers , 1976 .

[88]  Vladimir Dmitriev,et al.  Spontaneous and stimulated emission from photopumped GaN grown on SiC , 1995 .

[89]  W. Shan,et al.  Pressure‐dependent photoluminescence study of wurtzite GaN , 1995 .

[90]  M. Paisley,et al.  AlN/GaN superlattices grown by gas source molecular beam epitaxy , 1991 .

[91]  Michael S. Shur,et al.  Current/voltage characteristic collapse in AlGaN/GaN heterostructure insulated gate field effect transistors at high drain bias , 1994 .

[92]  Takashi Mukai,et al.  InxGa(1−x)N/InyGa(1−y)N superlattices grown on GaN films , 1993 .

[93]  Gil,et al.  Valence-band physics and the optical properties of GaN epilayers grown onto sapphire with wurtzite symmetry. , 1995, Physical review. B, Condensed matter.

[94]  H. Amano,et al.  p‐type conduction in Mg‐doped Ga0.91In0.09N grown by metalorganic vapor‐phase epitaxy , 1995 .

[95]  S. Kamiyama,et al.  Optical Gain Calculation of Wurtzite GaN/AlGaN Quantum Well Laser , 1995 .

[96]  H. Amano,et al.  Metalorganic Vapor Phase Epitaxial Growth and Properties of GaN/Al0.1Ga0.9N Layered Structures , 1991 .

[97]  H. Morkoç,et al.  SUPPRESSION OF LEAKAGE CURRENTS AND THEIR EFFECT ON THE ELECTRICAL PERFORMANCE OF ALGAN/GAN MODULATION DOPED FIELD-EFFECT TRANSISTORS , 1996 .