Nafion-functionalized electrospun poly(vinylidene fluoride) (PVDF) nanofibers for high performance proton exchange membranes in fuel cells

Nafion-functionalized poly(vinylidene fluoride) electrospun nanofibers (PVDFNF-Nafion) have been prepared through a 3-step reaction route. The chemical structure of PVDFNF-Nafion is characterized with Fourier transform infrared and X-ray photoelectron spectroscopy. Functionalization with Nafion chains improves the interfacial compatibility between the PVDF-based nanofibers and Nafion matrix in formation of PVDFNF-Nafion reinforced Nafion composite membrane (Nafion-CM1). Aggregation of Nafion chains on the nanofiber surfaces induces the formation of proton-conducting channels so as to increase the proton conductivity of the Nafion-CM1 membrane. In the H2/O2 single cell test, Nafion-CM1 shows a maximum power density of 700 mW cm−2 which is higher than the value of 500 mW cm−2 recorded with commercial Nafion 212 membrane. The presence of PVDFNF-Nafion also depresses the methanol permeability of the Nafion-CM1 membrane with alteration of the crystalline domains of Nafion. In direct methanol fuel cell tests, the low methanol permeability of Nafion-CM1 means it could be operated with 5 M methanol as the fuel and exhibits a maximum power density of 122 mW cm−2, which is larger than the value (60 mW cm−2) recorded with commercial Nafion 117 membrane and 2 M methanol fuel.

[1]  M. Alcoutlabi,et al.  Highly proton conductive electrolyte membranes: Fiber-induced long-range ionic channels , 2011 .

[2]  Chang Houn Rhee,et al.  Nafion/Sulfonated Montmorillonite Composite: A New Concept Electrolyte Membrane for Direct Methanol Fuel Cells , 2005 .

[3]  In-Hwan Oh,et al.  Characteristics of the Nafion ionomer-impregnated composite membrane for polymer electrolyte fuel cells , 2002 .

[4]  Liang Wu,et al.  Advances in proton-exchange membranes for fuel cells: an overview on proton conductive channels (PCCs). , 2013, Physical chemistry chemical physics : PCCP.

[5]  Shengmin Guo,et al.  Electrospun Nafion Nanofiber for Proton Exchange Membrane Fuel Cell Application , 2009 .

[6]  R. Kannan,et al.  Polymer electrolyte fuel cells using nafion-based composite membranes with functionalized carbon nanotubes. , 2008, Angewandte Chemie.

[7]  P. Mather,et al.  High conductivity perfluorosulfonic acid nanofiber composite fuel-cell membranes. , 2010, ChemSusChem.

[8]  Gurdev Singh,et al.  Preparation and characterization of highly hydrophobic poly(vinylidene fluoride) – Clay nanocomposite nanofiber membranes (PVDF–clay NNMs) for desalination using direct contact membrane distillation , 2012 .

[9]  Ying‐Ling Liu,et al.  Preparation and characterization of multifunctional maleimide macromonomers and their cured resins , 2004 .

[10]  Patrick T. Mather,et al.  Nanofiber Network Ion-Exchange Membranes , 2008 .

[11]  P. Pintauro,et al.  Preparation of nanofiber composite proton-exchange membranes from dual fiber electrospun mats , 2013 .

[12]  Sang Young Lee,et al.  A proton conductive silicate-nanoencapsulated polyimide nonwoven as a novel porous substrate for a reinforced sulfonated poly(arylene ether sulfone) composite membrane , 2012 .

[13]  Hongwei Zhang,et al.  Advances in the high performance polymer electrolyte membranes for fuel cells. , 2012, Chemical Society reviews.

[14]  P. Jannasch,et al.  Fully aromatic block copolymers for fuel cell membranes with densely sulfonated nanophase domains. , 2011, Macromolecular rapid communications.

[15]  Ying‐Ling Liu Developments of highly proton-conductive sulfonated polymers for proton exchange membrane fuel cells , 2012 .

[16]  B. P. Tripathi,et al.  Organic―inorganic nanocomposite polymer electrolyte membranes for fuel cell applications , 2011 .

[17]  H. Kawakami,et al.  Aligned electrospun nanofiber composite membranes for fuel cell electrolytes. , 2010, Nano letters.

[18]  P. Mather,et al.  Sulfonated Polysulfone/POSS Nanofiber Composite Membranes for PEM Fuel Cells , 2010 .

[19]  J. Lai,et al.  Hydrophilic surface-grafted poly(tetrafluoroethylene) membranes using in pervaporation dehydration processes , 2006 .

[20]  Hiroyuki Uchida,et al.  Proton-conductive aromatic ionomers containing highly sulfonated blocks for high-temperature-operable fuel cells. , 2010, Angewandte Chemie.

[21]  M. Guiver,et al.  A new class of highly-conducting polymer electrolyte membranes: Aromatic ABA triblock copolymers , 2012 .

[22]  P. Mather,et al.  Nanofiber composite membranes with low equivalent weight perfluorosulfonic acid polymers , 2010 .

[23]  Edson A. Ticianelli,et al.  Effect of water transport in a PEFC at low temperatures operating with dry hydrogen , 1999 .

[24]  M. Guiver,et al.  Sulfonated hydrocarbon membranes for medium-temperature and low-humidity proton exchange membrane fuel cells (PEMFCs) , 2011 .

[25]  Juin-Yih Lai,et al.  Preparation and applications of Nafion-functionalized multiwalled carbon nanotubes for proton exchange membrane fuel cells , 2010 .

[26]  P. Pintauro,et al.  Composite Fuel Cell Membranes from Dual-Nanofiber Electrospun Mats , 2011 .

[27]  U. Jeng,et al.  SAXS characterization of the Nafion membrane nanostructure modified by radiation cross-linkage , 2005 .

[28]  Arumugam Manthiram,et al.  Nafion-impregnated electrospun polyvinylidene fluoride composite membranes for direct methanol fuel cells , 2008 .

[29]  Bin Dong,et al.  Super proton conductive high-purity nafion nanofibers. , 2010, Nano letters.

[30]  Yi-Ming Sun,et al.  The effect of side chain architectures on the properties and proton conductivities of poly(styrene sulfonic acid) graft poly(vinylidene fluoride) copolymer membranes for direct methanol fuel cells , 2010 .

[31]  M. Guiver,et al.  Densely Sulfophenylated Segmented Copoly(arylene ether sulfone) Proton Exchange Membranes , 2011 .

[32]  R. Kannan,et al.  Domain size manipulation of perflouorinated polymer electrolytes by sulfonic acid-functionalized MWCNTs to enhance fuel cell performance. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[33]  Dong Min Kim,et al.  High efficiency of proton transport by clustering nanochannels in multi-sulfonated propeller-like nonplanar hexaphenylbenzene poly(ether sulfone)s , 2014 .

[34]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[35]  E. Rafiee,et al.  Cesium hydrogen salt of heteropolyacids/Nafion nanocomposite membranes for proton exchange membrane , 2011 .

[36]  Y. Lee,et al.  Polybenzimidazole membranes modified with polyelectrolyte-functionalized multiwalled carbon nanotubes for proton exchange membrane fuel cells , 2011 .

[37]  P. Mather,et al.  Nafion Nanofiber Membranes , 2009 .

[38]  Waldemar Bujalski,et al.  High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC) – A review , 2013 .

[39]  J. Lai,et al.  Nanocomposite membranes of Nafion and Fe3O4-anchored and Nafion-functionalized multiwalled carbon nanotubes exhibiting high proton conductivity and low methanol permeability for direct methanol fuel cells , 2013 .

[40]  H. Kawakami,et al.  Proton conductive properties of composite membranes containing uniaxially aligned ultrafine electrospun polyimide nanofiber , 2012 .

[41]  M. Alcoutlabi,et al.  Superacidic Electrospun Fiber‐Nafion Hybrid Proton Exchange Membranes , 2011 .

[42]  Jing Guo,et al.  Preparation of poly(vinylidene fluoride)/phosphotungstic acid composite nanofiber membranes by electrospinning for proton conductivity , 2010 .

[43]  Jou‐Hyeon Ahn,et al.  Polymer electrolyte membranes composed of an electrospun poly(vinylidene fluoride) fibrous mat in a poly(4-vinylpyridine) matrix , 2013 .

[44]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[45]  Yi-Ming Sun,et al.  Proton exchange membranes modified with sulfonated silica nanoparticles for direct methanol fuel cells , 2007 .

[46]  Yann Bultel,et al.  Investigation of mass transport in gas diffusion layer at the air cathode of a PEMFC , 2005 .

[47]  Na Young Kim,et al.  SiO2-coated polyimide nonwoven/Nafion composite membranes for proton exchange membrane fuel cells , 2011 .

[48]  Wei Liu,et al.  A proton exchange membrane fabricated from a chemically heterogeneous nonwoven with sandwich structure by the program-controlled co-electrospinning process. , 2012, Chemical communications.

[49]  Hongwei Zhang,et al.  Recent development of polymer electrolyte membranes for fuel cells. , 2012, Chemical reviews.

[50]  M. Kotaki,et al.  A review on polymer nanofibers by electrospinning and their applications in nanocomposites , 2003 .

[51]  Hsieh-Yu Li,et al.  Polyelectrolyte composite membranes of polybenzimidazole and crosslinked polybenzimidazole-polybenzoxazine electrospun nanofibers for proton exchange membrane fuel cells , 2013 .

[52]  M. Soleimani,et al.  Nanofiber-based polyelectrolytes as novel membranes for fuel cell applications , 2011 .

[53]  M. Boyce,et al.  Spray Layer‐by‐Layer Electrospun Composite Proton Exchange Membranes , 2013 .

[54]  Ying‐Ling Liu,et al.  Functionalization of multi-walled carbon nanotubes with non-reactive polymers through an ozone-mediated process for the preparation of a wide range of high performance polymer/carbon nanotube composites , 2010 .

[55]  H. Galiano,et al.  Nafion®/clay-SO3H membrane for proton exchange membrane fuel cell application , 2006 .

[56]  J. Lee,et al.  Fabrication and Properties of Reinforced Membranes Based on Sulfonated Poly(arylene ether sulfone) Copolymers for Proton-Exchange Membrane Fuel Cells , 2012 .

[57]  J. Weber Nanostructured poly(benzimidazole): from mesoporous networks to nanofibers. , 2010, ChemSusChem.

[58]  Michael A. Hickner,et al.  Direct polymerization of sulfonated poly(arylene ether sulfone) random (statistical) copolymers: candidates for new proton exchange membranes , 2002 .

[59]  M. Alcoutlabi,et al.  Sulfonated polystyrene fiber network-induced hybrid proton exchange membranes. , 2011, ACS applied materials & interfaces.

[60]  M. Soleimani,et al.  Novel nanofiber-based triple-layer proton exchange membranes for fuel cell applications , 2011 .