Monotone finite point method for non-equilibrium radiation diffusion equations

In this paper, we propose the monotone tailored-finite-point method for solving the non-equilibrium radiation diffusion equations. We first give two tailored finite point schemes for the nonlinear parabolic equation in one-dimensional case, then extend the idea to solve the radiation diffusion problem in 1D as well as 2D. By using variable substitute, our method satisfies the discrete maximum principle automatically, thus preserves the properties of monotonicity and positivity. Numerical results show that our method can capture the sharp front and can be accommodated to discontinues diffusion coefficient.

[1]  R. Bowers,et al.  Numerical Modeling in Applied Physics and Astrophysics , 1991 .

[2]  Min Tang,et al.  A uniformly second order numerical method for the one-dimensional discrete-ordinate transport equation and its diffusion limit with interface , 2009, Networks Heterog. Media.

[3]  Min Tang A UNIFORM FIRST-ORDER METHOD FOR THE DISCRETE ORDINATE TRANSPORT EQUATION WITH INTERFACES IN X,Y-GEOMETRY , 2009 .

[4]  L. Margolin,et al.  On balanced approximations for time integration of multiple time scale systems , 2003 .

[5]  An Hengbin Algebraic Two-level Iterative Method for 2-D 3-T Radiation Diffusion Equations , 2009 .

[6]  Wenjun Ying,et al.  Two Uniform Tailored Finite Point Schemes for the Two Dimensional Discrete Ordinates Transport Equations with Boundary and Interface Layers , 2014 .

[7]  Zhongyi Huang,et al.  Tailored finite point method based on exponential bases for convection-diffusion-reaction equation , 2012, Math. Comput..

[8]  William J. Rider,et al.  An efficient nonlinear solution method for non-equilibrium radiation diffusion , 1999 .

[9]  Kab Seok Kang P1 Nonconforming Finite Element Multigrid Method for Radiation Transport , 2003, SIAM J. Sci. Comput..

[10]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.

[11]  William J. Rider,et al.  Physics-Based Preconditioning and the Newton-Krylov Method for Non-equilibrium Radiation Diffusion , 2000 .

[12]  William J. Rider,et al.  Nonlinear convergence, accuracy, and time step control in nonequilibrium radiation diffusion , 2001 .

[13]  Zhongyi Huang,et al.  Tailored finite point method for the interface problem , 2009, Networks Heterog. Media.

[14]  Qin Li,et al.  The preconditioned Jacobian-free Newton-Krylov methods for nonequilibrium radiation diffusion equations , 2014, J. Comput. Appl. Math..

[15]  Houde Han,et al.  Tailored finite point method for steady-state reaction-diffusion equations , 2010 .

[16]  Zhongyi Huang,et al.  The Tailored Finite Point Method , 2014, Comput. Methods Appl. Math..

[17]  Gordon L. Olson,et al.  Efficient solution of multi-dimensional flux-limited nonequilibrium radiation diffusion coupled to material conduction with second-order time discretization , 2007, J. Comput. Phys..

[18]  Guangwei Yuan,et al.  Picard-Newton Iterative Method with Time Step Control for Multimaterial Non-Equilibrium Radiation Diffusion Problem , 2011 .

[19]  Zhiqiang Sheng,et al.  Monotone Finite Volume Schemes of Nonequilibrium Radiation Diffusion Equations on Distorted Meshes , 2009, SIAM J. Sci. Comput..

[20]  Lo Yang,et al.  Tailored finite point method for numerical simulation of partial differential equations , 2012 .

[21]  Zhi-zhong Sun,et al.  A second‐order linearized difference scheme on nonuniform meshes for nonlinear parabolic systems with Neumann boundary value conditions , 2003 .

[22]  Robert B. Lowrie,et al.  A comparison of implicit time integration methods for nonlinear relaxation and diffusion , 2004 .

[23]  S. Cox,et al.  Exponential Time Differencing for Stiff Systems , 2002 .

[24]  Po-Wen Hsieh,et al.  A Tailored Finite Point Method for Solving Steady MHD Duct Flow Problems with Boundary Layers , 2011 .

[25]  Changhua Yu,et al.  Finite volume element methods for nonequilibrium radiation diffusion equations , 2013 .

[26]  Jim E. Morel,et al.  Numerical analysis of time integration errors for nonequilibrium radiation diffusion , 2007, J. Comput. Phys..

[27]  Róbert Horváth,et al.  Discrete Maximum Principle and Adequate Discretizations of Linear Parabolic Problems , 2006, SIAM J. Sci. Comput..

[28]  D. A. Knoll,et al.  New physics-based preconditioning of implicit methods for non-equilibrium radiation diffusion , 2003 .

[29]  Z. Sheng,et al.  The computational method for nonlinear parabolic equation , 2013 .