A generating function approach to Markov chains undergoing binomial catastrophes

In a Markov chain population model subject to catastrophes, random immigration events (birth), promoting growth, are in balance with the effect of binomial catastrophes that cause recurrent mass removal (death). Using a generating function approach, we study two versions of such population models when the binomial catastrophic events are of a slightly different random nature. In both cases, we describe the subtle balance between the two birth and death conflicting effects.

[1]  R. Schinazi,et al.  A random walk with catastrophes. , 2017, Electronic journal of probability.

[2]  F. Steutel,et al.  Infinite Divisibility of Probability Distributions on the Real Line , 2003 .

[3]  J. Kemeny,et al.  Denumerable Markov chains , 1969 .

[4]  Antonis Economou,et al.  The compound Poisson immigration process subject to binomial catastrophes , 2004, Journal of Applied Probability.

[5]  J. Resing,et al.  LINEAR BIRTH/IMMIGRATION-DEATH PROCESS WITH BINOMIAL CATASTROPHES , 2015, Probability in the Engineering and Informational Sciences.

[6]  N. Bingham Random walk and fluctuation theory , 2001 .

[7]  Randall J. Swift,et al.  TRANSIENT PROBABILITIES FOR A SIMPLE BIRTH-DEATH-IMMIGRATION PROCESS UNDER THE INFLUENCE OF TOTAL CATASTROPHES , 2001 .

[8]  J. Klafter,et al.  The maximal process of nonlinear shot noise , 2009 .

[9]  Erik A. van Doorn,et al.  Quasi-stationary distributions , 2011 .

[10]  Metastability of a random walk with catastrophes , 2019, Electronic Communications in Probability.

[11]  Holger Dette,et al.  On the generating functions of a random walk on the non-negative integers , 1996, Journal of Applied Probability.

[12]  Marcel F. Neuts AN INTERESTING RANDOM WALK ON THE NON-NEGATIVE INTEGERS , 1994 .

[13]  Fw Fred Steutel,et al.  Discrete analogues of self-decomposability and stability , 1979 .

[14]  Antonis Economou,et al.  Alternative Approaches for the Transient Analysis of Markov Chains with Catastrophes , 2008 .

[15]  M. Kac Random Walk and the Theory of Brownian Motion , 1947 .

[16]  J. Klafter,et al.  Growth-collapse and decay-surge evolutions, and geometric Langevin equations , 2006 .

[17]  J. Klafter,et al.  Nonlinear Shot Noise: From aggregate dynamics to maximal dynamics , 2007 .

[18]  Wolfgang Woess,et al.  Denumerable Markov Chains: Generating Functions, Boundary Theory, Random Walks on Trees , 2009 .

[19]  J R Artalejo,et al.  Evaluating growth measures in an immigration process subject to binomial and geometric catastrophes. , 2007, Mathematical biosciences and engineering : MBE.

[20]  Christopher E. Dabrowski,et al.  Catastrophic event phenomena in communication networks: A survey , 2015, Comput. Sci. Rev..

[21]  Masaaki Sibuya,et al.  Generalized hypergeometric, digamma and trigamma distributions , 1979 .

[22]  Extinction times for a general birth, death and catastrophe process , 2004 .

[23]  Peter W. Glynn,et al.  A probabilistic proof of the Perron–Frobenius theorem , 2018, Naval Research Logistics (NRL).

[24]  Tuan Phung-Duc,et al.  A central limit theorem for a Markov-modulated infinite-server queue with batch Poisson arrivals and binomial catastrophes , 2019, Perform. Evaluation.

[25]  Antonis Economou,et al.  The effect of catastrophes on the strategic customer behavior in queueing systems , 2013 .

[26]  B. Elderd,et al.  The effect of density‐dependent catastrophes on population persistence time , 2003 .

[27]  Scaling Features of Two Special Markov Chains Involving Total Disasters , 2020, 2101.03853.

[28]  Eddie McKenzie,et al.  Discrete variate time series , 2003 .

[29]  D. Vere-Jones Ergodic properties of nonnegative matrices. II , 1967 .

[30]  D. Vere-Jones,et al.  ERGODIC PROPERTIES OF NONNEGATIVE MATRICES-I , 2012 .

[31]  Hendrik Baumann,et al.  Steady state analysis of level dependent quasi-birth-and-death processes with catastrophes , 2012, Comput. Oper. Res..

[32]  J. Gani,et al.  Birth, immigration and catastrophe processes , 1982, Advances in Applied Probability.

[33]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[34]  C. Grojean,et al.  Laboratoire de Physique Théorique et Modélisation, , 1999 .

[35]  J. Neveu Chaînes de Markov et théorie du potentiel , 1964 .

[36]  Ken-iti Sato Potential operators for Markov processes , 1972 .