Spaces of Polygonal Triangulations and Monsky Polynomials

Given a combinatorial triangulation of an n-gon, we study (a) the space of all possible drawings in the plane such the edges are straight line segments and the boundary has a fixed shape, and (b) the algebraic variety of possibilities for the areas of the triangles in such drawings. We define a generalized notion of triangulation, and we show that the areas of the triangles in a generalized triangulation ${\mathcal {T}}$ of a square must satisfy a single irreducible homogeneous polynomial relation $p({\mathcal {T}})$ depending only on the combinatorics of ${\mathcal {T}}$. The invariant $p({\mathcal {T}})$ is called the Monsky polynomial; it captures algebraic, geometric, and combinatorial information about ${\mathcal {T}}$. We give an algorithm that computes a lower bound on the degree of $p({\mathcal {T}})$, and we present several examples in which the algorithm is used to compute the degree.

[1]  D. G. Mead Dissection of the hypercube into simplexes , 1979 .

[2]  Paul Monsky On Dividing A Square Into Triangles , 1970 .

[3]  Idzhad Kh. Sabitov,et al.  The Volume as a Metric Invariant of Polyhedra , 1998, Discret. Comput. Geom..

[4]  D. P. Robbins Areas of polygons inscribed in a circle , 1994, Discret. Comput. Geom..

[5]  I. Pak,et al.  Rigidity and polynomial invariants of convex polytopes , 2005 .

[6]  S. Stein Cutting a Polygon into Triangles of Equal Areas , 2004 .

[7]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[8]  S. K. Stein,et al.  Equidissections of polygons , 1990, Discret. Math..

[9]  David A. Cox,et al.  Using Algebraic Geometry , 1998 .

[10]  Robert Connelly Comments on generalized Heron polynomials and Robbins' conjectures , 2009, Discret. Math..

[11]  Igor Pak The area of cyclic polygons: Recent progress on Robbins' conjectures , 2005, Adv. Appl. Math..

[12]  R. Connelly,et al.  The Bellows conjecture. , 1997 .

[13]  Robert Connelly The rigidity of suspensions , 1978 .

[14]  Dinesh Manocha,et al.  Algorithm for implicitizing rational parametric surfaces , 1992, Comput. Aided Geom. Des..

[15]  John Thomas A Dissection Problem , 1968 .

[16]  Виталий Викторович Варфоломеев,et al.  Вписанные многоугольники и полиномы Герона@@@Inscribed polygons and Heron polynomials , 2003 .

[17]  Paul Monsky,et al.  A conjecture of Stein on plane dissections , 1990 .

[18]  Sherman K. Stein,et al.  Algebra and Tiling by Sherman K. Stein , 2009 .

[19]  Sherman K. Stein,et al.  Algebra and Tiling by Sherman K. Stein , 2009 .