Individual cell types in C. elegans age differently and activate distinct cell-protective responses.

[1]  G. Garinis,et al.  The DREAM complex functions as conserved master regulator of somatic DNA-repair capacities , 2023, Nature Structural & Molecular Biology.

[2]  R. Kerr,et al.  The C. elegans Observatory: High-throughput exploration of behavioral aging , 2022, bioRxiv.

[3]  Alex M. Ascensión,et al.  Lack of evidence for increased transcriptional noise in aged tissues , 2022, bioRxiv.

[4]  C. Dieterich,et al.  Ageing induces tissue‐specific transcriptomic changes in Caenorhabditis elegans , 2022, The EMBO journal.

[5]  I. Katic,et al.  End-of-life targeted degradation of DAF-2 insulin/IGF-1 receptor promotes longevity free from growth-related pathologies , 2021, eLife.

[6]  Martin Jinye Zhang,et al.  Mouse aging cell atlas analysis reveals global and cell type-specific aging signatures , 2021, eLife.

[7]  T. Wyss-Coray,et al.  Asynchronous, contagious and digital aging , 2021, Nature Aging.

[8]  Steven J. Cook,et al.  Molecular topography of an entire nervous system , 2020, Cell.

[9]  Philipp Berens,et al.  Analytic Pearson residuals for normalization of single-cell RNA-seq UMI data , 2020, Genome Biology.

[10]  Michael P. Cary,et al.  Application of Transcriptional Gene Modules to Analysis of Caenorhabditis elegans’ Gene Expression Data , 2020, G3.

[11]  Irving L. Weissman,et al.  A single-cell transcriptomic atlas characterizes ageing tissues in the mouse , 2020, Nature.

[12]  James T. Webber,et al.  Aging hallmarks exhibit organ-specific temporal signatures , 2020, Nature.

[13]  N. Alic,et al.  Evolutionary Conservation of Transcription Factors Affecting Longevity. , 2020, Trends in genetics : TIG.

[14]  David R. Kelley,et al.  Differentiation reveals the plasticity of age-related change in murine muscle progenitors , 2020, bioRxiv.

[15]  David R. Kelley,et al.  Murine single-cell RNA-seq reveals cell-identity- and tissue-specific trajectories of aging , 2019, Genome research.

[16]  David R. Kelley,et al.  Solo: doublet identification via semi-supervised deep learning , 2019, bioRxiv.

[17]  John C. Marioni,et al.  Unsupervised removal of systematic background noise from droplet-based single-cell experiments using CellBender , 2019, bioRxiv.

[18]  Gary D. Bader,et al.  Single-cell transcriptomic profiling of the aging mouse brain , 2019, Nature Neuroscience.

[19]  M. Casanueva,et al.  Neuronal XBP-1 Activates Intestinal Lysosomes to Improve Proteostasis in C. elegans , 2019, Current Biology.

[20]  Peter O Fedichev,et al.  A universal transcriptomic signature of age reveals the temporal scaling of Caenorhabditis elegans aging trajectories , 2019, Scientific Reports.

[21]  R. Satija,et al.  Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression , 2019, Genome Biology.

[22]  Jonathan S. Packer,et al.  A lineage-resolved molecular atlas of C. elegans embryogenesis at single-cell resolution , 2019, Science.

[23]  Nicholas Stiffler,et al.  Organism-wide single-cell transcriptomics of long-lived C. elegans daf-2-/- mutants reveals tissue-specific reprogramming of gene expression networks , 2019, bioRxiv.

[24]  Michael I. Jordan,et al.  Deep Generative Modeling for Single-cell Transcriptomics , 2018, Nature Methods.

[25]  Vincent A. Traag,et al.  From Louvain to Leiden: guaranteeing well-connected communities , 2018, Scientific Reports.

[26]  James T. Webber,et al.  Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris , 2018, Nature.

[27]  O. Troyanskaya,et al.  Transcriptome analysis of adult Caenorhabditis elegans cells reveals tissue-specific gene and isoform expression , 2018, PLoS genetics.

[28]  J. Lee,et al.  Single-cell RNA sequencing technologies and bioinformatics pipelines , 2018, Experimental & Molecular Medicine.

[29]  Leland McInnes,et al.  UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction , 2018, ArXiv.

[30]  Fabian J Theis,et al.  SCANPY: large-scale single-cell gene expression data analysis , 2018, Genome Biology.

[31]  P. Swoboda,et al.  An Expanded Role for the RFX Transcription Factor DAF-19, with Dual Functions in Ciliated and Nonciliated Neurons , 2018, Genetics.

[32]  João Pedro de Magalhães,et al.  Human Ageing Genomic Resources: new and updated databases , 2017, Nucleic Acids Res..

[33]  S. Quake,et al.  Single-Cell Analysis of Human Pancreas Reveals Transcriptional Signatures of Aging and Somatic Mutation Patterns , 2017, Cell.

[34]  Richard D. Smith,et al.  Changes of Protein Turnover in Aging Caenorhabditis elegans* , 2017, Molecular & Cellular Proteomics.

[35]  J. Aerts,et al.  SCENIC: Single-cell regulatory network inference and clustering , 2017, Nature Methods.

[36]  Cynthia Kenyon,et al.  How a Mutation that Slows Aging Can Also Disproportionately Extend End-of-Life Decrepitude. , 2017, Cell reports.

[37]  Sarah A. Teichmann,et al.  Aging increases cell-to-cell transcriptional variability upon immune stimulation , 2017, Science.

[38]  Zachary Pincus,et al.  Extended Twilight among Isogenic C. elegans Causes a Disproportionate Scaling between Lifespan and Health. , 2016, Cell systems.

[39]  J. Lieb,et al.  A Transcriptional Lineage of the Early C. elegans Embryo. , 2016, Developmental cell.

[40]  C. Kenyon,et al.  Reversible Age-Related Phenotypes Induced during Larval Quiescence in C. elegans. , 2016, Cell metabolism.

[41]  Ze Cheng,et al.  The auxin-inducible degradation (AID) system enables versatile conditional protein depletion in C. elegans , 2015, Development.

[42]  C. Murphy,et al.  The C. elegans adult neuronal IIS/FOXO transcriptome reveals adult phenotype regulators , 2015, Nature.

[43]  S. Rangaraju,et al.  Suppression of transcriptional drift extends C. elegans lifespan by postponing the onset of mortality , 2015, eLife.

[44]  O. Witte,et al.  Branched-chain amino acid catabolism is a conserved regulator of physiological ageing , 2015, Nature Communications.

[45]  Jeong-Hoon Hahm,et al.  C. elegans maximum velocity correlates with healthspan and is maintained in worms with an insulin receptor mutation , 2015, Nature Communications.

[46]  Andrew W. Folkmann,et al.  High Efficiency, Homology-Directed Genome Editing in Caenorhabditis elegans Using CRISPR-Cas9 Ribonucleoprotein Complexes , 2015, Genetics.

[47]  Kate B. Cook,et al.  Determination and Inference of Eukaryotic Transcription Factor Sequence Specificity , 2014, Cell.

[48]  P. Mcquary,et al.  The TFEB orthologue HLH-30 regulates autophagy and modulates longevity in Caenorhabditis elegans , 2013, Nature Communications.

[49]  Manuel Serrano,et al.  The Hallmarks of Aging , 2013, Cell.

[50]  G. Ruvkun,et al.  Prediction of C. elegans Longevity Genes by Human and Worm Longevity Networks , 2012, PloS one.

[51]  Gyan Bhanot,et al.  Neurite Sprouting and Synapse Deterioration in the Aging Caenorhabditis elegans Nervous System , 2012, The Journal of Neuroscience.

[52]  Bernhard Schölkopf,et al.  A Kernel Two-Sample Test , 2012, J. Mach. Learn. Res..

[53]  F. Slack,et al.  MicroRNA Predictors of Longevity in Caenorhabditis elegans , 2011, PLoS genetics.

[54]  A. Woollard,et al.  The Caenorhabditis elegans GATA Factor ELT-1 Works through the Cell Proliferation Regulator BRO-1 and the Fusogen EFF-1 to Maintain the Seam Stem-Like Fate , 2011, PLoS genetics.

[55]  C. Kenyon,et al.  Spontaneous Age-Related Neurite Branching in Caenorhabditis elegans , 2011, The Journal of Neuroscience.

[56]  Rex A. Kerr,et al.  High-Throughput Behavioral Analysis in C. elegans , 2011, Nature Methods.

[57]  S. McIntire,et al.  Genetic analysis of age-dependent defects of the Caenorhabditis elegans touch receptor neurons , 2011, Proceedings of the National Academy of Sciences.

[58]  J. Kuhn,et al.  Isolation and Culture of Larval Cells from C. elegans , 2011, PloS one.

[59]  William Stafford Noble,et al.  FIMO: scanning for occurrences of a given motif , 2011, Bioinform..

[60]  Morris F. Maduro,et al.  Endoderm development in Caenorhabditis elegans: the synergistic action of ELT-2 and -7 mediates the specification→differentiation transition. , 2010, Developmental biology.

[61]  Alma L. Burlingame,et al.  Widespread Protein Aggregation as an Inherent Part of Aging in C. elegans , 2010, PLoS biology.

[62]  J. Vanfleteren,et al.  Disruption of insulin signalling preserves bioenergetic competence of mitochondria in ageing Caenorhabditis elegans , 2010, BMC Biology.

[63]  E. Nishida,et al.  The DM Domain Transcription Factor MAB-3 Regulates Male Hypersensitivity to Oxidative Stress in Caenorhabditis elegans , 2010, Molecular and Cellular Biology.

[64]  C. Kenyon The genetics of ageing , 2010, Nature.

[65]  Elizabeth A Miller,et al.  Collapse of proteostasis represents an early molecular event in Caenorhabditis elegans aging , 2009, Proceedings of the National Academy of Sciences.

[66]  G. Ruvkun,et al.  Lifespan Regulation by Evolutionarily Conserved Genes Essential for Viability , 2007, PLoS genetics.

[67]  Seung-Jae V. Lee,et al.  Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans , 2007, Aging cell.

[68]  Jan Vijg,et al.  Increased cell-to-cell variation in gene expression in ageing mouse heart , 2006, Nature.

[69]  Matt Kaeberlein,et al.  Regulation of Yeast Replicative Life Span by TOR and Sch9 in Response to Nutrients , 2005, Science.

[70]  H. Bellen,et al.  Gfi/Pag-3/Senseless Zinc Finger Proteins: a Unifying Theme? , 2004, Molecular and Cellular Biology.

[71]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[72]  R. Morimoto,et al.  Regulation of longevity in Caenorhabditis elegans by heat shock factor and molecular chaperones. , 2003, Molecular biology of the cell.

[73]  C. Finch,et al.  Genetics of aging. , 1997, Science.

[74]  Cynthia Kenyon,et al.  Regulation of Aging and Age-Related Disease by DAF-16 and Heat-Shock Factor , 2003, Science.

[75]  Y. Dong,et al.  Systematic functional analysis of the Caenorhabditis elegans genome using RNAi , 2003, Nature.

[76]  Kyle Duke,et al.  Transcriptional Profile of Aging in C. elegans , 2002, Current Biology.

[77]  S. W. Emmons,et al.  Regulation of sex-specific differentiation and mating behavior in C. elegans by a new member of the DM domain transcription factor family. , 2002, Genes & development.

[78]  Cynthia Kenyon,et al.  Signals from the reproductive system regulate the lifespan of C. elegans , 1999, Nature.

[79]  T. Pawson,et al.  UNC-73 Activates the Rac GTPase and Is Required for Cell and Growth Cone Migrations in C. elegans , 1998, Cell.

[80]  E. Lambie,et al.  gon-2, a gene required for gonadogenesis in Caenorhabditis elegans. , 1997, Genetics.

[81]  H. Horvitz,et al.  The Caenorhabditis elegans gene lin-1 encodes an ETS-domain protein and defines a branch of the vulval induction pathway. , 1995, Genes & development.

[82]  A. Fire,et al.  The Caenorhabditis elegans MYOD homologue HLH-1 is essential for proper muscle function and complete morphogenesis. , 1994, Development.

[83]  N. Munakata [Genetics of Caenorhabditis elegans]. , 1989, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[84]  D. Hirsh,et al.  The postembryonic cell lineages of the hermaphrodite and male gonads in Caenorhabditis elegans. , 1979, Developmental biology.

[85]  J. Sulston,et al.  Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. , 1977, Developmental biology.

[86]  Andrew C. Adey,et al.  Single-Cell Transcriptional Profiling of a Multicellular Organism , 2017 .

[87]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[88]  J. White,et al.  Polyploid tissues in the nematode Caenorhabditis elegans. , 1985, Developmental biology.