A low-rank approach to the computation of path integrals
暂无分享,去创建一个
[1] Eric Dubach. Artificial boundary conditions for diffusion equations: numerical study , 1996 .
[2] R. Feynman,et al. Quantum Mechanics and Path Integrals , 1965 .
[3] Rasmus Bro,et al. Multi-way Analysis with Applications in the Chemical Sciences , 2004 .
[4] Eugene E. Tyrtyshnikov,et al. Cross approximation in tensor electron density computations , 2010, Numer. Linear Algebra Appl..
[5] H. Kleinert. Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets , 2006 .
[6] E. Hairer,et al. Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .
[7] G. Parisi. Brownian motion , 2005, Nature.
[8] E. Brigham,et al. The fast Fourier transform and its applications , 1988 .
[9] N. Bleistein,et al. Asymptotic Expansions of Integrals , 1975 .
[10] F. L. Hitchcock. The Expression of a Tensor or a Polyadic as a Sum of Products , 1927 .
[11] B. Khoromskij,et al. DMRG+QTT approach to computation of the ground state for the molecular Schrödinger operator , 2010 .
[12] Laurent Demanet,et al. Sublinear Randomized Algorithms for Skeleton Decompositions , 2011, SIAM J. Matrix Anal. Appl..
[13] N. Makri. Numerical path integral techniques for long time dynamics of quantum dissipative systems , 1995 .
[14] Daniel Kressner,et al. A literature survey of low‐rank tensor approximation techniques , 2013, 1302.7121.
[15] David E. Booth,et al. Multi-Way Analysis: Applications in the Chemical Sciences , 2005, Technometrics.
[16] W. Miller,et al. Monte carlo integration with oscillatory integrands: implications for feynman path integration in real time , 1987 .
[17] E. Tyrtyshnikov. Kronecker-product approximations for some function-related matrices , 2004 .
[18] Joos Vandewalle,et al. A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..
[19] Boris N. Khoromskij,et al. Numerical Solution of the Hartree - Fock Equation in Multilevel Tensor-Structured Format , 2011, SIAM J. Sci. Comput..
[20] J. Chisholm. Approximation by Sequences of Padé Approximants in Regions of Meromorphy , 1966 .
[21] Boris N. Khoromskij,et al. Tensor Numerical Methods in Scientific Computing , 2018 .
[22] Eugene E. Tyrtyshnikov,et al. Breaking the Curse of Dimensionality, Or How to Use SVD in Many Dimensions , 2009, SIAM J. Sci. Comput..
[23] Ivan P. Gavrilyuk,et al. Quantized-TT-Cayley transform to compute dynamics and spectrum of high-dimensional Hamiltonians , 2011 .
[24] Markus Holtz,et al. Sparse Grid Quadrature , 2011 .
[25] B. Khoromskij. O(dlog N)-Quantics Approximation of N-d Tensors in High-Dimensional Numerical Modeling , 2011 .
[26] Ivan Oseledets,et al. QTT approximation of elliptic solution operators in higher dimensions , 2011 .
[27] W. Hackbusch,et al. A New Scheme for the Tensor Representation , 2009 .
[28] Eugene E. Tyrtyshnikov,et al. Incomplete Cross Approximation in the Mosaic-Skeleton Method , 2000, Computing.
[29] F. L. Hitchcock. Multiple Invariants and Generalized Rank of a P‐Way Matrix or Tensor , 1928 .
[30] Mario Bebendorf,et al. Adaptive Cross Approximation of Multivariate Functions , 2011 .
[31] M. Kac. On Some Connections between Probability Theory and Differential and Integral Equations , 1951 .
[32] Frances Y. Kuo,et al. Monte Carlo and quasi-Monte Carlo methods 2012 , 2013 .
[33] R. Mazo,et al. Brownian Motion: Fluctuations, Dynamics, and Applications , 2002 .
[34] Edward Nelson. Dynamical Theories of Brownian Motion , 1967 .
[35] R. Bass. Diffusions and Elliptic Operators , 1997 .
[36] B. Khoromskij. Tensors-structured Numerical Methods in Scientific Computing: Survey on Recent Advances , 2012 .
[37] S. V. DOLGOV,et al. Fast Solution of Parabolic Problems in the Tensor Train/Quantized Tensor Train Format with Initial Application to the Fokker-Planck Equation , 2012, SIAM J. Sci. Comput..
[38] R. Feynman,et al. Space-Time Approach to Non-Relativistic Quantum Mechanics , 1948 .
[39] E. Tyrtyshnikov. Mosaic-Skeleton approximations , 1996 .
[40] Ivan Oseledets,et al. Fast solution of multi-dimensional parabolic problems in the tensor train/quantized tensor train–format with initial application to the Fokker-Planck equation , 2012 .
[41] Ivan P. Gavrilyuk,et al. Quantized-TT-Cayley Transform for Computing the Dynamics and the Spectrum of High-Dimensional Hamiltonians , 2011, Comput. Methods Appl. Math..
[42] B. Khoromskij,et al. Low rank Tucker-type tensor approximation to classical potentials , 2007 .
[43] H. Nussbaumer. Fast Fourier transform and convolution algorithms , 1981 .
[44] Ivan Oseledets,et al. Fast orthogonalization to the kernel of the discrete gradient operator with application to Stokes problem , 2010 .
[45] Janos Polonyi,et al. Lectures on the functional renormalization group method , 2001, hep-th/0110026.
[46] Mario Bebendorf,et al. Approximation of boundary element matrices , 2000, Numerische Mathematik.
[47] Nancy Makri,et al. Blip decomposition of the path integral: exponential acceleration of real-time calculations on quantum dissipative systems. , 2014, The Journal of chemical physics.
[48] Reinhold Schneider,et al. Esaim: Mathematical Modelling and Numerical Analysis Best N -term Approximation in Electronic Structure Calculations I. One-electron Reduced Density Matrix , 2022 .
[49] A. Borodin,et al. Handbook of Brownian Motion - Facts and Formulae , 1996 .
[50] Thomas Gerstner,et al. Numerical integration using sparse grids , 2004, Numerical Algorithms.
[51] R. Schneider,et al. DIRECT MINIMIZATION FOR CALCULATING INVARIANT SUBSPACES IN DENSITY FUNCTIONAL COMPUTATIONS OF THE ELECTRONIC STRUCTURE , 2008, 0805.1190.
[52] Ivan V. Oseledets,et al. Fast Multidimensional Convolution in Low-Rank Tensor Formats via Cross Approximation , 2015, SIAM J. Sci. Comput..
[53] Martin J. Mohlenkamp,et al. Algorithms for Numerical Analysis in High Dimensions , 2005, SIAM J. Sci. Comput..
[54] Gene H. Golub,et al. Matrix computations , 1983 .
[55] Boris N. Khoromskij,et al. Low-rank Kronecker-product Approximation to Multi-dimensional Nonlocal Operators. Part II. HKT Representation of Certain Operators , 2005, Computing.
[56] Tamara G. Kolda,et al. Tensor Decompositions and Applications , 2009, SIAM Rev..
[57] Jean-François Le Gall,et al. Brownian Motion and Partial Differential Equations , 2016 .
[58] Jonas Ballani,et al. Fast evaluation of singular BEM integrals based on tensor approximations , 2012, Numerische Mathematik.
[59] K. Wong,et al. Review of Feynman’s Path Integral in Quantum Statistics: from the Molecular Schrödinger Equation to Kleinert’s Variational Perturbation Theory , 2014 .
[60] Ivan Oseledets,et al. Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..
[61] Boris N. Khoromskij,et al. Quantics-TT Collocation Approximation of Parameter-Dependent and Stochastic Elliptic PDEs , 2010, Comput. Methods Appl. Math..
[62] Reinhold Schneider,et al. Tensor-Structured Factorized Calculation of Two-Electron Integrals in a General Basis , 2013, SIAM J. Sci. Comput..
[63] W. Hackbusch. Tensor Spaces and Numerical Tensor Calculus , 2012, Springer Series in Computational Mathematics.
[64] Michael Griebel,et al. Sparse Grids and Applications , 2012 .
[65] G. Mahan. Many-particle physics , 1981 .
[66] Dietrich Braess,et al. F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig Approximation of 1/x by Exponential Sums in [1, ∞) , 2022 .
[67] C. Garrod,et al. Hamiltonian Path-Integral Methods , 1966 .
[68] M. Bebendorf,et al. Mathematik in den Naturwissenschaften Leipzig Accelerating Galerkin BEM for Linear Elasticity using Adaptive Cross Approximation , 2006 .
[69] Masud Chaichian,et al. Path integrals in physics , 2001 .
[70] J. Zinn-Justin. Quantum Field Theory and Critical Phenomena , 2002 .
[71] Thomas Gerstner,et al. Dimension–Adaptive Tensor–Product Quadrature , 2003, Computing.
[72] VLADIMIR A. KAZEEV,et al. Low-Rank Explicit QTT Representation of the Laplace Operator and Its Inverse , 2012, SIAM J. Matrix Anal. Appl..
[73] Stefan Kunis,et al. Recompression techniques for adaptive cross approximation , 2009 .
[74] S. Goreinov,et al. A Theory of Pseudoskeleton Approximations , 1997 .
[75] Boris N. Khoromskij,et al. F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig Fast and Accurate Tensor Approximation of Multivariate Convolution with Linear Scaling in Dimension Fast and Accurate Tensor Approximation of Multivariate Convolution with Linear Scaling in Dimension , 2022 .
[76] Boris N. Khoromskij,et al. Multigrid Accelerated Tensor Approximation of Function Related Multidimensional Arrays , 2009, SIAM J. Sci. Comput..
[77] Mark Coppejans,et al. Breaking the Curse of Dimensionality , 2000 .
[78] S. Goreinov,et al. How to find a good submatrix , 2010 .
[79] Mikhail S. Litsarev,et al. The DEPOSIT computer code based on the low rank approximations , 2014, Comput. Phys. Commun..
[80] R. A. Silverman,et al. Methods of Quantum Field Theory in Statistical Physics , 1964 .
[81] Boris N. Khoromskij,et al. Low-rank Kronecker-product Approximation to Multi-dimensional Nonlocal Operators. Part I. Separable Approximation of Multi-variate Functions , 2005, Computing.
[82] Reinhold Schneider,et al. Best N-term approximation in electronic structure calculations. II. Jastrow factors , 2007 .
[83] C. Brezinski,et al. Extrapolation methods , 1992 .
[84] G. Beylkin,et al. Approximation by exponential sums revisited , 2010 .
[85] L. Tucker,et al. Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.
[86] Xiaonan Wu,et al. Convergence of difference scheme for heat equation in unbounded domains using artificial boundary conditions , 2004 .
[87] Boris N. Khoromskij,et al. Tensor-Structured Preconditioners and Approximate Inverse of Elliptic Operators in ℝd , 2009 .
[88] Eugene E. Tyrtyshnikov,et al. Tucker Dimensionality Reduction of Three-Dimensional Arrays in Linear Time , 2008, SIAM J. Matrix Anal. Appl..
[89] Boris N. Khoromskij,et al. Mathematik in den Naturwissenschaften Leipzig Tensor-Product Approximation to Operators and Functions in High Dimensions , 2007 .
[90] James Demmel,et al. Applied Numerical Linear Algebra , 1997 .
[91] S. Goreinov,et al. Pseudo-skeleton approximations by matrices of maximal volume , 1997 .
[92] Martin J. Mohlenkamp,et al. Numerical operator calculus in higher dimensions , 2002, Proceedings of the National Academy of Sciences of the United States of America.
[93] Rainer Dick,et al. Path Integrals in Quantum Mechanics , 2012 .
[94] M. Masujima,et al. Path Integral Quantization and Stochastic Quantization , 2000 .
[95] Lars Grasedyck,et al. Hierarchical Singular Value Decomposition of Tensors , 2010, SIAM J. Matrix Anal. Appl..
[96] J. Stoer,et al. Introduction to Numerical Analysis , 2002 .
[97] Markus Holtz,et al. Sparse Grid Quadrature in High Dimensions with Applications in Finance and Insurance , 2010, Lecture Notes in Computational Science and Engineering.
[98] Vladimir A. Kazeev,et al. Multilevel Toeplitz Matrices Generated by Tensor-Structured Vectors and Convolution with Logarithmic Complexity , 2013, SIAM J. Sci. Comput..
[99] John Crank,et al. The Mathematics Of Diffusion , 1956 .
[100] Ivan V. Oseledets,et al. Fast low‐rank approximations of multidimensional integrals in ion‐atomic collisions modelling , 2015, Numer. Linear Algebra Appl..
[101] B. Khoromskij,et al. Tensor numerical methods in quantum chemistry: from Hartree-Fock to excitation energies. , 2015, Physical chemistry chemical physics : PCCP.
[102] Wolfgang Hackbusch,et al. An Introduction to Hierarchical (H-) Rank and TT-Rank of Tensors with Examples , 2011, Comput. Methods Appl. Math..
[103] О. С. Лебедева. Tensor conjugate-gradient-type method for Rayleigh quotient minimization in block QTT format , 2011 .
[104] Boris N. Khoromskij,et al. Tensor decomposition in electronic structure calculations on 3D Cartesian grids , 2009, J. Comput. Phys..
[105] Ivan P. Gavrilyuk,et al. Hierarchical Tensor-Product Approximation to the Inverse and Related Operators for High-Dimensional Elliptic Problems , 2004, Computing.
[106] Ivan V. Oseledets,et al. Approximation of 2d˟2d Matrices Using Tensor Decomposition , 2010, SIAM J. Matrix Anal. Appl..
[107] Laura G. Sánchez-Lozada,et al. Correction: Corrigendum: Endogenous fructose production and metabolism in the liver contributes to the development of metabolic syndrome , 2013, Nature Communications.
[108] S. Goreinov,et al. The maximum-volume concept in approximation by low-rank matrices , 2001 .
[109] S. Tretiak,et al. Semiclassical Monte-Carlo approach for modelling non-adiabatic dynamics in extended molecules , 2013, Nature Communications.
[110] Lieven De Lathauwer,et al. A survey of tensor methods , 2009, 2009 IEEE International Symposium on Circuits and Systems.
[111] Boris N. Khoromskij,et al. Superfast Fourier Transform Using QTT Approximation , 2012 .
[112] Dmitry V. Savostyanov. QTT-rank-one vectors with QTT-rank-one and full-rank Fourier images , 2012 .
[113] I. Oseledets. Constructive Representation of Functions in Low-Rank Tensor Formats , 2012, Constructive Approximation.
[114] Claude Brezinski,et al. Extrapolation methods - theory and practice , 1993, Studies in computational mathematics.
[115] E. Hairer,et al. Geometric Numerical Integration , 2022, Oberwolfach Reports.
[116] Colas Schretter,et al. Monte Carlo and Quasi-Monte Carlo Methods , 2016 .
[117] E. Tyrtyshnikov,et al. TT-cross approximation for multidimensional arrays , 2010 .