LEOFETs with three polymer based designs.

: The symmetric state transfer-resistance transfer-semantic transfer in a uniform design of state based circuit theory, as a generalization of thin client based computing is inspired by design thinking paradigms like the C+ language, ​ (“Website” n.d.) ​ primarily developed towards ending memory buffer overflow attacks, and in the creation of scalable quantum scale computing. Spin Torque Transfer adds spin wave functionality to adiabatic control theory implementations in circuit theory for reconfigurability. An atomic unit of this paradigm is in waveguide coupled LE-OFETS, the possible future of flexible circuits and a contender for minimalist designs for the quantum e-paper project. In this paper we use MaC to model mathematically one such atomic design of a LE-OFET.

[1]  K. Tanigaki,et al.  Separation in the Roles of Carrier Transport and Light Emission in Light-Emitting Organic Transistors with a Bilayer Configuration. , 2019, ACS applied materials & interfaces.

[2]  Yichun Liu,et al.  Conformal transistor arrays based on solution-processed organic crystals , 2017, Scientific Reports.

[3]  B. Kaushik,et al.  Organic Thin-Film Transistor Applications: Materials to Circuits , 2016 .

[4]  A. Morozovska,et al.  Hysteretic phenomena in GFET: Comprehensive theory and experiment , 2016, 1608.01139.

[5]  Jing Guo,et al.  Vertical Organic Field-Effect Transistors for Integrated Optoelectronic Applications. , 2016, ACS applied materials & interfaces.

[6]  Yuguang Ma,et al.  An ambipolar organic field-effect transistor based on an AIE-active single crystal with a high mobility level of 2.0 cm(2) V(-1) s(-1). , 2016, Chemical communications.

[7]  S. Hotta Organic single-crystal light-emitting field-effect transistors , 2014, 2015 20th Microoptics Conference (MOC).

[8]  J. Zaumseil Recent Trends in Light‐Emitting Organic Field‐Effect Transistors , 2013 .

[9]  R. White,et al.  The gFET™ switch: A new low voltage high speed GaAs HEMT for switching applications , 2013, 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC).

[10]  Soon Moon Jeong,et al.  Effect of Photonic Structures in Organic Light-Emitting Diodes – Light Extraction and Polarization Characteristics , 2012 .

[11]  I. Shcherbakov,et al.  Solution-processed polyfluorene–ZnO nanoparticles ambipolar light-emitting field-effect transistor , 2011 .

[12]  S. Hotta,et al.  Organic Light-Emitting Field-Effect Transistor with Channel Waveguide Structure , 2010 .

[13]  Takaaki Manaka,et al.  Space charge field effect on light emitting from tetracene field-effect transistor under AC electric field , 2009 .

[14]  M. Ichikawa,et al.  Integrating organic light-emitting diode and field-effect-transistor in a single device , 2008 .

[15]  P. Ruden,et al.  Device Model for Light-Emitting Field-Effect Transistors with Organic Semiconductor Channel , 2007 .

[16]  Michele Muccini,et al.  Light-emitting ambipolar organic heterostructure field-effect transistor , 2004 .

[17]  Michele Muccini,et al.  Ambipolar light-emitting organic field-effect transistor , 2004 .

[18]  Roland Schmechel,et al.  Light-emitting field-effect transistor: simple model and underlying functional mechanisms , 2003, SPIE Optics + Photonics.

[19]  Anna K. Farquhar,et al.  Abstract template , 2016 .

[20]  C. Melzer,et al.  The organic light-emitting field-effect transistor , 2008 .

[21]  M. Panzer Polymer electrolyte-gated organic field-effect transistors , 2007 .

[22]  Constance Rost-Bietsch Ambipolar and light emitting organic field effect transistors , 2005 .

[23]  D. Bheemaiah,et al.  Automating the architecture and design of VUI : a Low Code Approach. , 2022 .