Spatial Sampling for Image Segmentation

We present a novel framework for image segmentation based on the maximum likelihood estimator. A common hypothesis for explaining the differences among image regions is that they are generated by sampling different likelihood functions called models. In this work, we construct on last hypothesis and, additionally, we assume that such samples come from independent and identically distributed random variables. Thus, the probability (likelihood) that a particular model generates the observed value (at a given pixel) is estimated by computing the likelihood of the sample composed with the surrounding pixels. This simple approach allows us to propose efficient segmentation methods able to deal with textured images. Our approach is naturally extended for combining different features. Experiments in interactive image segmentation, automatic stereo analysis and denoising of brain water diffusion multi-tensor fields demonstrate the capabilities of our approach.

[1]  Mariano Rivera,et al.  Spatial Sampling for Image Segmentation , 2010, ISCIS.

[2]  Andrew Blake,et al.  Probabilistic Fusion of Stereo with Color and Contrast for Bi-Layer Segmentation , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Andrew Blake,et al.  Probabilistic Fusion of Stereo with Color and Contrast for Bilayer Segmentation , 2006, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Demetri Terzopoulos,et al.  Regularization of Inverse Visual Problems Involving Discontinuities , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Mariano Rivera,et al.  Entropy-Controlled Quadratic Markov Measure Field Models for Efficient Image Segmentation , 2007, IEEE Transactions on Image Processing.

[6]  Anders P. Eriksson,et al.  Improved spectral relaxation methods for binary quadratic optimization problems , 2008, Comput. Vis. Image Underst..

[7]  Yair Weiss,et al.  Segmentation using eigenvectors: a unifying view , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[8]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Richard Szeliski,et al.  High-accuracy stereo depth maps using structured light , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[10]  James C. Gee,et al.  Denoising Intra-voxel Axon Fiber Orientations by Means of ECQMMF Method , 2009, MICAI.

[11]  Mariano Rivera,et al.  Image segmentation by convex quadratic programming , 2008, 2008 19th International Conference on Pattern Recognition.

[12]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[13]  Nikolas P. Galatsanos,et al.  Spatially Varying Mixtures Incorporating Line Processes for Image Segmentation , 2009, Journal of Mathematical Imaging and Vision.

[14]  Joachim Weickert,et al.  Coherence-Enhancing Diffusion Filtering , 1999, International Journal of Computer Vision.

[15]  Danny Barash,et al.  A Fundamental Relationship between Bilateral Filtering, Adaptive Smoothing, and the Nonlinear Diffusion Equation , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Tomaso Poggio,et al.  Probabilistic Solution of Ill-Posed Problems in Computational Vision , 1987 .

[17]  Olga Veksler,et al.  Fast approximate energy minimization via graph cuts , 2001, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[18]  Pushmeet Kohli,et al.  Dynamic Graph Cuts for Efficient Inference in Markov Random Fields , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Leo Grady,et al.  Random Walks for Image Segmentation , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Pushmeet Kohli,et al.  Measuring uncertainty in graph cut solutions , 2008, Comput. Vis. Image Underst..

[21]  Marie-Pierre Jolly,et al.  Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[22]  Roberto Manduchi,et al.  Bilateral filtering for gray and color images , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[23]  D. Greig,et al.  Exact Maximum A Posteriori Estimation for Binary Images , 1989 .

[24]  J. Marroquín,et al.  Linguistic color image segmentation using a hierarchical Bayesian approach , 2009 .

[25]  Mariano Rivera,et al.  Gauss-Markov Measure Field Models for Low-Level Vision , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[28]  Patrick Pérez,et al.  Interactive Image Segmentation Using an Adaptive GMMRF Model , 2004, ECCV.

[29]  Mariano Rivera,et al.  Diffusion Basis Functions Decomposition for Estimating White Matter Intravoxel Fiber Geometry , 2007, IEEE Transactions on Medical Imaging.

[30]  Dani Lischinski,et al.  Spectral Matting , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[31]  Vladimir Kolmogorov,et al.  What energy functions can be minimized via graph cuts? , 2002, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  C. Q. Lee,et al.  The Computer Journal , 1958, Nature.

[33]  Edgar Arce Santana,et al.  Hidden Markov Measure Field Models for Image Segmentation , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[34]  Stan Z. Li,et al.  Markov Random Field Modeling in Image Analysis , 2001, Computer Science Workbench.

[35]  Andrew Blake,et al.  "GrabCut" , 2004, ACM Trans. Graph..

[36]  Martin J. Wainwright,et al.  Image denoising using scale mixtures of Gaussians in the wavelet domain , 2003, IEEE Trans. Image Process..

[37]  Nikos Komodakis,et al.  Performance vs computational efficiency for optimizing single and dynamic MRFs: Setting the state of the art with primal-dual strategies , 2008, Comput. Vis. Image Underst..