Chirp and stability of mode-locked semiconductor lasers

A numerical study of mode-locked semiconductor lasers is presented with special attention to the chirp characteristics and to dispersion-related criteria for stable pulse-train emission. The dependence of the pulse chirp upon the refractive-index change, both with carrier density and carrier temperature changes, is discussed. The experimental observation of blue-chirped pulses for passive mode-locking in contrast to red-chirped pulses for active mode-locking is found to be due to the different contributions of gain and absorber media to the refractive-index change. In addition, it is revealed that the boundary of the stable operation regime is critically influenced by the spectral characteristics of laser and external cavity. Design considerations toward the achievement of high pulse energy, narrow spectral bandwidth, and linear chirp are given.

[1]  N. Storkfelt,et al.  Measurement of carrier lifetime and linewidth enhancement factor for 1.5- mu m ridge-waveguide laser amplifier , 1991, IEEE Photonics Technology Letters.

[2]  D. Bimberg,et al.  Generation of 290 fs pulses at 1.3 μm by hybrid mode‐locking of a semiconductor laser and optimization of the time‐bandwidth product , 1994 .

[3]  Fourier-limited 1.6-ps pulses with variable repetition rate from 1 to 26 GHz by passive mode-locking of a semiconductor laser in an external cavity , 1995, IEEE Photonics Technology Letters.

[4]  Arthur J. Lowery,et al.  Stability and spectral behavior of grating-controlled actively mode-locked lasers , 1991 .

[5]  H. Yasaka,et al.  Group delay and alpha -parameter measurement of 1.3 mu m semiconductor traveling-wave optical amplifier using the interferometric method , 1991 .

[6]  A. S. Hou,et al.  Tunable, picosecond pulse generation using a compressed, modelocked laser diode source , 1990, IEEE Photonics Technology Letters.

[7]  A. Gopinath,et al.  Study of passive mode locking of semiconductor lasers using time‐domain modeling , 1993 .

[8]  James P. Gordon,et al.  Theory of passively mode-locked lasers for the case of a nonlinear complex-propagation coefficient , 1985 .

[9]  Ming C. Wu,et al.  Monolithic colliding-pulse mode-locked quantum-well lasers , 1991 .

[10]  S Arahira,et al.  Terahertz-rate optical pulse generation from a passively mode-locked semiconductor laser diode. , 1994, Optics letters.

[11]  Y. Silberberg,et al.  Subpicosecond pulses from a mode-locked semiconductor laser , 1986 .

[12]  Pulse compression of an actively modelocked diode laser using linear dispersion in fiber , 1990, IEEE Photonics Technology Letters.

[13]  J. Lourtioz,et al.  Nonlinear chirp compensation in high-power broad-spectrum pulses from single-stripe mode-locked laser diodes , 1995 .

[14]  A. Yariv,et al.  Subpicosecond (320 fs) pulses from CW passively mode-locked external cavity two-section multiquantum well lasers , 1992 .

[15]  Takeshi Kamiya,et al.  Chirp of passively and actively mode‐locked semiconductor lasers , 1995 .

[16]  Hitoshi Kawaguchi,et al.  Coherent photon seeding of actively mode locked laser diodes , 1993 .

[17]  John E. Bowers,et al.  Short pulse generation using multisegment mode-locked semiconductor lasers , 1992 .

[18]  A. Ehrhardt,et al.  Turn-key-ready wavelength-, repetition rate- and pulsewidth-tunable femtosecond hybrid modelocked semiconductor laser , 1995 .

[19]  Raymond van Roijen,et al.  Monolithic passively mode-locked semiconductor lasers: theory and experiment , 1996, Photonics West.

[20]  M. Demokan A model of a diode laser actively mode-locked by gain modulation , 1986 .

[21]  E. Schöll Dynamic theory of picosecond optical pulse shaping by gain-switched semiconductor laser amplifiers , 1988 .

[22]  J. Mork,et al.  Nonlinear gain suppression in semiconductor lasers due to carrier heating , 1991, IEEE Photonics Technology Letters.

[23]  Martin Schell,et al.  Generation of single femtosecond pulses by hybrid mode-locking of a semiconductor laser , 1992 .

[24]  S. Corzine,et al.  Actively mode-locked semiconductor lasers , 1989 .

[25]  G. Alphonse,et al.  200-fs optical pulse generation and intracavity pulse evolution in a hybrid mode-locked semiconductor diode-laser/amplifier system. , 1992, Optics letters.

[26]  H. Haus,et al.  A theory of forced mode locking , 1975, IEEE Journal of Quantum Electronics.

[27]  Erich P. Ippen,et al.  Ultrafast refractive index dynamics in AlGaAs diode laser amplifiers , 1991 .

[28]  Niloy K. Dutta,et al.  Long wavelength semiconductor lasers , 1988, Technical Digest., International Electron Devices Meeting.

[29]  John Carroll,et al.  Dynamics of monolithic passively mode-locked semiconductor lasers , 1995 .

[30]  D. Bimberg,et al.  Fundamental limits of sub-ps pulse generation by active mode locking of semiconductor lasers: the spectral gain width and the facet reflectivities , 1991 .

[31]  H. Haus Theory of mode locking with a slow saturable absorber , 1975 .

[32]  A. Mecozzi,et al.  Response function for gain and refractive index dynamics in active semiconductor waveguides , 1994 .

[33]  J. Lourtioz,et al.  230 fs, 25 W pulses from conventional mode-locked laser diodes with saturable absorber created by ion implantation , 1993 .

[34]  L. Coldren,et al.  Corrections to the expression for gain in GaAs , 1990 .

[35]  R. Zimmermann Nonlinear Optics and the Mott Transition in Semiconductors , 1988 .

[36]  J. P. Ziel Chapter 1 Mode Locking of Semiconductor Lasers , 1985 .

[37]  Alexander V. Uskov,et al.  Terahertz four‐wave mixing in semiconductor optical amplifiers: Experiment and theory , 1994 .