From crop to model to crop: identifying the genetic basis of the staygreen mutation in the Lolium/Festuca forage and amenity grasses.

Armstead, I. P., Donnison, I. S., Aubry, S., Harper, J. A., Hortensteiner, S., James, C. L., Mani, J., Moffet, M., Ougham, H. J., Roberts, L. A., Thomas, A., Weeden, N., Thomas, Howard, King, I. P. (2006). From crop to model to crop: identifying the genetic basis of the staygreen mutation in the Lolium/Festuca forage and amenity grasses. New Phytologist, 172 (4), 592-597.

[1]  C. Foyer,et al.  Chlorophyll a fluorescence, enzyme and antioxidant analyses provide evidence for the operation of alternative electron sinks during leaf senescence in a stay‐green mutant of Festuca pratensis , 1997 .

[2]  H. Thomas,et al.  Five ways to stay green. , 2000, Journal of experimental botany.

[3]  H. Thomas Sid: a Mendelian locus controlling thylakoid membrane disassembly in senescing leaves of Festuca pratensis , 1987, Theoretical and Applied Genetics.

[4]  Z. Grieg,et al.  A linkage map of meadow fescue (Festuca pratensis Huds.) and comparative mapping with other Poaceae species , 2003, Theoretical and Applied Genetics.

[5]  E. Grotewold,et al.  Transposon insertions in the promoter of the Zea mays a1 gene differentially affect transcription by the Myb factors P and C1. , 2002, Genetics.

[6]  N. Paek,et al.  Isolation, characterization, and mapping of the stay green mutant in rice , 2002, Theoretical and Applied Genetics.

[7]  H. Thomas,et al.  Separation of Chlorophyll Degradation from Other Senescence Processes in Leaves of a Mutant Genotype of Meadow Fescue (Festuca pratensis L.). , 1975, Plant physiology.

[8]  Mervyn O. Humphreys,et al.  Comparison and integration of genetic maps generated from F2 and BC1‐type mapping populations in perennial ryegrass , 2002 .

[9]  S. Hörtensteiner Chlorophyll degradation during senescence. , 2006, Annual review of plant biology.

[10]  S. Hörtensteiner The loss of green color during chlorophyll degradation—a prerequisite to prevent cell death? , 2004, Planta.

[11]  P. Zimmermann,et al.  GENEVESTIGATOR. Arabidopsis Microarray Database and Analysis Toolbox1[w] , 2004, Plant Physiology.

[12]  S. Hörtensteiner,et al.  Evolution of Chlorophyll Degradation: The Significance of RCC Reductase , 2000 .

[13]  Matthijs Tollenaar,et al.  Vertical Profile of Leaf Senescence during the Grain‐Filling Period in Older and Newer Maize Hybrids , 2004 .

[14]  I. Donnison,et al.  What stay-green mutants tell us about nitrogen remobilization in leaf senescence. , 2002, Journal of experimental botany.

[15]  M. Roca,et al.  Analysis of the chlorophyll catabolism pathway in leaves of an introgression senescence mutant of Lolium temulentum. , 2004, Phytochemistry.

[16]  G. Jung,et al.  Chromosomal rearrangements differentiating the ryegrass genome from the Triticeae, oat, and rice genomes using common heterologous RFLP probes , 2005, Theoretical and Applied Genetics.

[17]  G. Heijne,et al.  ChloroP, a neural network‐based method for predicting chloroplast transit peptides and their cleavage sites , 1999, Protein science : a publication of the Protein Society.

[18]  S. Gan,et al.  A Gene Encoding an Acyl Hydrolase Is Involved in Leaf Senescence in Arabidopsis Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.010422. , 2002, The Plant Cell Online.

[19]  I. Donnison,et al.  Molecular tagging of a senescence gene by introgression mapping of a stay-green mutation from Festuca pratensis. , 2005, The New phytologist.

[20]  G. Jackowski,et al.  AtFtsH6 is involved in the degradation of the light-harvesting complex II during high-light acclimation and senescence. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[21]  H. Thomas,et al.  Chlorophyll breakdown in senescent leaves identification of the biochemical lesion in a stay-green genotype of Festuca pratensis Huds. , 1995, The New phytologist.

[22]  Toshihiko Yamada,et al.  An enhanced molecular marker based genetic map of perennial ryegrass (Lolium perenne) reveals comparative relationships with other Poaceae genomes. , 2002, Genome.

[23]  I. Donnison,et al.  Construction of two Lolium perenne BAC libraries and identification of BACs containing candidate genes for disease resistance and forage quality , 2006, Molecular Breeding.

[24]  W. Rooney,et al.  Opportunities to Improve Adaptability and Yield in Grasses , 2002 .

[25]  B. Grimm,et al.  Recent advances in chlorophyll biosynthesis and breakdown in higher plants , 2004, Plant Molecular Biology.

[26]  H. Thomas,et al.  Crops that stay green , 1993 .