Computer Vision, Descriptive Geometry, and Classical Mechanics

The medial-axis transform, also called skeleton, is a shape abstraction proposed by computer vision. The concept is closely related to cyclographic maps, a tool developed by descriptive geometry to investigate distance functions, and to the solution of the eikonal equation. We discuss these connections and their implications on techniques for computing the skeleton.

[1]  E. Kruppa Vorlesungen über darstellende Geometrie , 1929 .

[2]  A. Goodman A Partial Differential Equation and Parallel Plane Curves , 1964 .

[3]  Azriel Rosenfeld,et al.  Sequential Operations in Digital Picture Processing , 1966, JACM.

[4]  Ugo Montanari,et al.  Continuous Skeletons from Digitized Images , 1969, JACM.

[5]  H. Blum Biological shape and visual science (part I) , 1973 .

[6]  Franco P. Preparata,et al.  The Medial Axis of a Simple Polygon , 1977, MFCS.

[7]  André Denayer Automatic generation of finite element meshes , 1978 .

[8]  P. Danielsson Euclidean distance mapping , 1980 .

[9]  J. W. Humberston Classical mechanics , 1980, Nature.

[10]  D. T. Lee,et al.  Medial Axis Transformation of a Planar Shape , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  G. Borgefors Distance transformations in arbitrary dimensions , 1984 .

[12]  Lee R. Nackman,et al.  Three-Dimensional Shape Description Using the Symmetric Axis Transform I: Theory , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Gilbert Strang,et al.  Introduction to applied mathematics , 1988 .

[14]  Vijay Srinivasan,et al.  Voronoi Diagram for Multiply-Connected Polygonal Domains I: Algorithm , 1987, IBM J. Res. Dev..

[15]  Siavash N. Meshkat,et al.  Voronoi Diagram for Multiply-Connected Polygonal Domains II: Implementation and Application , 1987, IBM J. Res. Dev..

[16]  Halit Nebi Gürsoy,et al.  Shape interrogation by medial axis transform for automated analysis , 1989 .

[17]  C. Hoffmann,et al.  A geometric investigation of the skeleton of CSG objects , 1990 .

[18]  Christoph M. Hoffmann,et al.  Surface approximations in geometric modeling , 1990 .

[19]  Christoph M. Hoffmann,et al.  A dimensionality paradigm for surface interrogations , 1990, Comput. Aided Geom. Des..

[20]  C. Hoffmann Algebraic and Numerical Techniques for Offsets and Blends , 1990 .

[21]  Christoph M. Hoffmann,et al.  How to Construct the Skeleton of CSG Objects , 1990 .

[22]  Christoph M. Hoffmann,et al.  Fundamental Techniques for Geometric and Solid Modeling , 1991 .

[23]  John A. Goldak,et al.  Constructing 3-D discrete medial axis , 1991, SMA '91.

[24]  Sabine Stifter,et al.  An Axiomatic Approach to Voronoi-Diagrams in 3D , 1991, J. Comput. Syst. Sci..

[25]  Christoph M. Hoffmann,et al.  On Alternate Solid Representations and Their Uses , 1991 .

[26]  Christoph M. Hoffmann,et al.  How to Compute Offsets Without Self-Intersection , 1991 .

[27]  Nickolas S. Sapidis,et al.  Domain Delaunay Tetrahedrization of arbitrarily shaped curved polyhedra defined in a solid modeling system , 1991, SMA '91.

[28]  Christoph M. Hoffmann,et al.  How to compute offsets without self-intersection (Invited Paper) , 1992, Other Conferences.

[29]  L. Nackman,et al.  Automatic mesh generation using the symmetric axis transformation of polygonal domains , 1992, Proc. IEEE.