Local Exact Controllability of a One-Dimensional Nonlinear Schrödinger Equation

We consider a one-dimensional nonlinear Schrodinger equation, modeling a Bose--Einstein condensate in an infinite square-well potential (box). This is a nonlinear control system in which the state is the wave function of the Bose--Einstein condensate and the control is the length of the box. We prove that local exact controllability around the ground state (associated with a fixed length of the box) holds generically with respect to the chemical potential $\mu $, i.e., up to an at most countable set of $\mu $-values. The proof relies on the linearization principle and the inverse mapping theorem, as well as ideas from analytic perturbation theory.

[1]  Karine Beauchard,et al.  Local controllability and non-controllability for a 1D wave equation with bilinear control , 2011 .

[2]  Sylvain Ervedoza,et al.  Approximate Controllability for a System of Schrödinger Equations Modeling a Single Trapped Ion , 2009 .

[3]  V. Nersesyan Growth of Sobolev Norms and Controllability of the Schrödinger Equation , 2008, 0804.3982.

[4]  Karine Beauchard,et al.  Local controllability of 1D Schrödinger equations with bilinear control and minimal time , 2012, 1208.5393.

[5]  Enrique Zuazua,et al.  Remarks on the controllability of the Schrödinger equation , 2002, CRM Workshop.

[6]  Karine Beauchard,et al.  Local controllability of 1D linear and nonlinear Schr , 2010, 1001.3288.

[7]  Alexander L. Gaunt,et al.  Quantum Joule-Thomson effect in a saturated homogeneous Bose gas. , 2013, Physical review letters.

[8]  Hayk Nersisyan,et al.  Global exact controllability in infinite time of Schrödinger equation: multidimensional case , 2012, 1201.3445.

[9]  Lucie Baudouin A bilinear optimal control problem applied to a time dependent Hartree-Fock equation coupled with classical nuclear dynamics , 2006 .

[10]  Michael Hintermüller,et al.  Optimal Bilinear Control of Gross-Pitaevskii Equations , 2012, SIAM J. Control. Optim..

[11]  Roger W. Brockett,et al.  Finite Controllability of Infinite-Dimensional Quantum Systems , 2010, IEEE Transactions on Automatic Control.

[12]  D. Stefanatos,et al.  Frictionless decompression in minimum time of Bose-Einstein condensates in the Thomas-Fermi regime , 2012 .

[13]  Nabile Boussaid,et al.  Weakly Coupled Systems in Quantum Control , 2011, IEEE Transactions on Automatic Control.

[14]  Lionel Rosier CONTROL OF THE SURFACE OF A FLUID BY A WAVEMAKER , 2004 .

[15]  A. del Campo,et al.  Shortcuts to adiabaticity in a time-dependent box , 2012, Scientific Reports.

[16]  H. Brezis Analyse fonctionnelle : théorie et applications , 1983 .

[17]  Gabriel Turinici,et al.  On the controllability of bilinear quantum systems , 2000 .

[18]  C. Psaroudaki,et al.  Oscillations of a Bose–Einstein condensate in a rapidly contracting circular box , 2009 .

[19]  Mazyar Mirrahimi,et al.  Controllability of quantum harmonic oscillators , 2004, IEEE Transactions on Automatic Control.

[20]  T. P. Meyrath,et al.  Bose Einstein Condensate in a Box , 2005 .

[21]  M. Ray,et al.  Observation of Dirac monopoles in a synthetic magnetic field , 2014, Nature.

[22]  Vahagn Nersesyan,et al.  Global approximate controllability for Schr\"odinger equation in higher Sobolev norms and applications , 2009, 0905.2438.

[23]  Holger Teismann,et al.  Rigorous numerics for NLS: bound states, spectra, and controllability , 2013, 1310.6531.

[24]  P. Lancaster,et al.  On the perturbation of analytic matrix functions , 1999 .

[25]  A. Haraux,et al.  Séries lacunaires et contrôle semi-interne des vibrations d'une plaque rectangulaire , 1989 .

[26]  David Edward Bruschi,et al.  Phonon creation by gravitational waves , 2014, 1402.7009.

[27]  Mario Sigalotti,et al.  Controllability of the discrete-spectrum Schrödinger equation driven by an external field , 2008, 0801.4893.

[28]  T. Schumm,et al.  Interferometry with non-classical motional states of a Bose–Einstein condensate , 2014, Nature Communications.

[29]  U. Boscain,et al.  Controllability of the Schrödinger Equation via Intersection of Eigenvalues , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[30]  J. Coron Control and Nonlinearity , 2007 .

[31]  W. Schlag,et al.  The nonlinear Schrödinger equation , 2008 .

[32]  Dionisis Stefanatos,et al.  Optimal shortcuts to adiabaticity for a quantum piston , 2013, Autom..

[33]  D. Matrasulov,et al.  Bernoulli's formula and Poisson's equations for a confined quantum gas: effects due to a moving piston. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  Claude Le Bris,et al.  Contrôle optimal bilinéaire d'une équation de Schrödinger , 2000 .

[35]  Jean-Michel Coron,et al.  Partial Differential Equations / Optimal Control On the small-time local controllability of a quantum particle in a moving one-dimensional infinite square potential well , 2005 .

[36]  Mazyar Mirrahimi,et al.  Lyapunov control of a quantum particle in a decaying potential , 2008, 0805.0910.

[37]  Karine Beauchard,et al.  Local controllability of a 1-D Schrödinger equation , 2005 .

[38]  Alexander L. Gaunt,et al.  Bose-Einstein condensation of atoms in a uniform potential. , 2012, Physical review letters.

[39]  Jerrold E. Marsden,et al.  Controllability for Distributed Bilinear Systems , 1982 .

[40]  H. Rabitz,et al.  CONTROL OF QUANTUM PHENOMENA , 2011 .

[41]  H. Teismann,et al.  Generalized coherent states and the control of quantum systems , 2005 .

[42]  Reinhard Illner,et al.  Limitations on the control of Schrödinger equations , 2006 .

[43]  Adiabaticity in nonlinear quantum dynamics: Bose-Einstein condensate in a time-varying box , 2001, cond-mat/0111416.

[44]  Stationary solutions of the one-dimensional nonlinear Schrodinger equation: II. Case of attractive nonlinearity , 1999, cond-mat/9911177.

[45]  Lucie Baudouin,et al.  Regularity for a Schrödinger equation with singular potentials and application to bilinear optimal control , 2005 .

[46]  T. Tarn,et al.  On the controllability of quantum‐mechanical systems , 1983 .

[47]  Tosio Kato Perturbation theory for linear operators , 1966 .

[48]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[49]  Ulrich Hohenester,et al.  OCTBEC - A Matlab toolbox for optimal quantum control of Bose-Einstein condensates , 2013, Comput. Phys. Commun..

[50]  Controlling quasiparticle excitations in a trapped Bose-Einstein condensate , 2004, cond-mat/0409634.

[51]  H. Teismann,et al.  Controllability of the nonlinear Schrödinger equation in the vicinity of the ground state , 2007 .

[52]  Mario Sigalotti,et al.  A Weak Spectral Condition for the Controllability of the Bilinear Schrödinger Equation with Application to the Control of a Rotating Planar Molecule , 2011, ArXiv.

[53]  Karine Beauchard,et al.  Controllability of a quantum particle in a moving potential well , 2006 .

[54]  Karine Beauchard CONTROLLABLITY OF A QUANTUM PARTICLE IN A 1D VARIABLE DOMAIN , 2008 .