Identities from weighted Motzkin paths

[1]  William Y. C. Chen,et al.  Old and young leaves on plane trees , 2004, Eur. J. Comb..

[2]  Rosena R. X. Du,et al.  Reduction of m-regular noncrossing partitions , 2004, Eur. J. Comb..

[3]  Robert A. Sulanke,et al.  Generalizing Narayana and Schröder Numbers to Higher Dimensions , 2004, Electron. J. Comb..

[4]  R. Sirnion Two combinatorial statistics on Dyck paths , 2004 .

[5]  Curtis Coker,et al.  Enumerating a class of lattice paths , 2003, Discret. Math..

[6]  Emeric Deutsch,et al.  A bijection between ordered trees and 2-Motzkin paths and its many consequences , 2002, Discret. Math..

[7]  Robert A. Sulanke,et al.  Counting Lattice Paths by Narayana Polynomials , 2000, Electron. J. Comb..

[8]  Robert A. Sulanke,et al.  Catalan path statistics having the Narayana distribution , 1998, Discret. Math..

[9]  Emeric Deutsch,et al.  A bijection on Dyck paths and its consequences , 1998, Discret. Math..

[10]  Alberto Del Lungo,et al.  A Construction for Enumerating k-coloured Motzkin Paths , 1995, COCOON.

[11]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[12]  Robert A. Sulanke,et al.  A symmetric variation of a distribution of Kreweras and Poupard , 1993 .

[13]  Rodica Simion,et al.  Some q-analogues of the Schröder numbers arising from combinatorial statistics on lattice paths , 1993 .

[14]  Rodica Simion,et al.  On the structure of the lattice of noncrossing partitions , 1991, Discret. Math..

[15]  Doron Zeilberger Six etudes in generating functions , 1989 .

[16]  Dominique Gouyou-Beauchamps,et al.  Deux Propriétés Combinatoires Des Nombres De Schröder , 1988, RAIRO Theor. Informatics Appl..

[17]  Germain Kreweras Joint distributions of three descriptive parameters of bridges , 1986 .

[18]  Gérard Viennot,et al.  Algebraic Languages and Polyominoes Enumeration , 1983, Theor. Comput. Sci..

[19]  Ira M. Gessel,et al.  A noncommutative generalization and $q$-analog of the Lagrange inversion formula , 1980 .

[20]  Philippe Flajolet,et al.  Combinatorial aspects of continued fractions , 1980, Discret. Math..

[21]  L. Dubikajtis Sur certaines équations fonctionnelles vérifiées par la fonction $φ(x) = x^{-1}$ , 1969 .