Identities from weighted Motzkin paths
暂无分享,去创建一个
[1] William Y. C. Chen,et al. Old and young leaves on plane trees , 2004, Eur. J. Comb..
[2] Rosena R. X. Du,et al. Reduction of m-regular noncrossing partitions , 2004, Eur. J. Comb..
[3] Robert A. Sulanke,et al. Generalizing Narayana and Schröder Numbers to Higher Dimensions , 2004, Electron. J. Comb..
[4] R. Sirnion. Two combinatorial statistics on Dyck paths , 2004 .
[5] Curtis Coker,et al. Enumerating a class of lattice paths , 2003, Discret. Math..
[6] Emeric Deutsch,et al. A bijection between ordered trees and 2-Motzkin paths and its many consequences , 2002, Discret. Math..
[7] Robert A. Sulanke,et al. Counting Lattice Paths by Narayana Polynomials , 2000, Electron. J. Comb..
[8] Robert A. Sulanke,et al. Catalan path statistics having the Narayana distribution , 1998, Discret. Math..
[9] Emeric Deutsch,et al. A bijection on Dyck paths and its consequences , 1998, Discret. Math..
[10] Alberto Del Lungo,et al. A Construction for Enumerating k-coloured Motzkin Paths , 1995, COCOON.
[11] N. J. A. Sloane,et al. The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..
[12] Robert A. Sulanke,et al. A symmetric variation of a distribution of Kreweras and Poupard , 1993 .
[13] Rodica Simion,et al. Some q-analogues of the Schröder numbers arising from combinatorial statistics on lattice paths , 1993 .
[14] Rodica Simion,et al. On the structure of the lattice of noncrossing partitions , 1991, Discret. Math..
[15] Doron Zeilberger. Six etudes in generating functions , 1989 .
[16] Dominique Gouyou-Beauchamps,et al. Deux Propriétés Combinatoires Des Nombres De Schröder , 1988, RAIRO Theor. Informatics Appl..
[17] Germain Kreweras. Joint distributions of three descriptive parameters of bridges , 1986 .
[18] Gérard Viennot,et al. Algebraic Languages and Polyominoes Enumeration , 1983, Theor. Comput. Sci..
[19] Ira M. Gessel,et al. A noncommutative generalization and $q$-analog of the Lagrange inversion formula , 1980 .
[20] Philippe Flajolet,et al. Combinatorial aspects of continued fractions , 1980, Discret. Math..
[21] L. Dubikajtis. Sur certaines équations fonctionnelles vérifiées par la fonction $φ(x) = x^{-1}$ , 1969 .