Liganden, die während der Katalyse Elektronen speichern und freisetzen

Edle Gabe : Ubergangsmetalle der ersten Reihe nehmen durch redoxaktive Liganden einen edlen Charakter an, wodurch Zweielektronenschritte in Form oxidativer Additionen und reduktiver Eliminierungen ermoglicht werden (siehe Schema). Eine neue Cobalt‐vermittelte Negishi‐Kreuzkupplung bietet ein Beispiel fur dieses Konzept und verdeutlicht sein Potenzial fur die Entwicklung neuer katalytischer Reaktionen mit kostengunstigen Metallen.

[1]  K. Hardcastle,et al.  Redox-active ligand-mediated oxidative addition and reductive elimination at square planar cobalt(III): multielectron reactions for cross-coupling. , 2010, Journal of the American Chemical Society.

[2]  J. Reek,et al.  'Carbene radicals' in Co(II)(por)-catalyzed olefin cyclopropanation. , 2010, Journal of the American Chemical Society.

[3]  Karl Wieghardt,et al.  Radical Ligands Confer Nobility on Base-Metal Catalysts , 2010, Science.

[4]  K. Hardcastle,et al.  Redox-active ligand-mediated Co-Cl bond-forming reactions at reducing square planar cobalt(III) centers , 2010 .

[5]  P. Chirik,et al.  Iron-catalyzed, hydrogen-mediated reductive cyclization of 1,6-enynes and diynes: evidence for bis(imino)pyridine ligand participation. , 2009, Journal of the American Chemical Society.

[6]  J. Ziller,et al.  Pi*-pi* bonding interactions generated by halogen oxidation of zirconium(IV) redox-active ligand complexes. , 2008, Journal of the American Chemical Society.

[7]  Arjan J. J. Koekkoek,et al.  The Organometallic Chemistry of Rh‐, Ir‐, Pd‐, and Pt‐Based Radicals: Higher Valent Species , 2008 .

[8]  P. Fanwick,et al.  Multi-electron activation of dioxygen on zirconium(IV) to give an unprecedented bisperoxo complex. , 2007, Journal of the American Chemical Society.

[9]  P. Chirik,et al.  Iron-Catalyzed [2π + 2π] Cycloaddition of α,ω-Dienes: The Importance of Redox-Active Supporting Ligands , 2006 .

[10]  A. F. Heyduk,et al.  C-C bond-forming reductive elimination from a zirconium(IV) redox-active ligand complex. , 2006, Journal of the American Chemical Society.

[11]  J. Ziller,et al.  "Oxidative addition" to a Zirconium(IV) redox-active ligand complex. , 2005, Inorganic chemistry.

[12]  Sason Shaik,et al.  Mechanism of oxidation reactions catalyzed by cytochrome p450 enzymes. , 2004, Chemical reviews.

[13]  J. W. Whittaker,et al.  Free radical catalysis by galactose oxidase. , 2003, Chemical reviews.

[14]  K. Wieghardt,et al.  Molecular and electronic structures of bis(pyridine-2,6-diimine)metal complexes [ML2](PF6)n (n = 0, 1, 2, 3; M = Mn, Fe, Co, Ni, Cu, Zn). , 2000, Inorganic chemistry.

[15]  J. Stubbe,et al.  Protein Radicals in Enzyme Catalysis. , 1998, Chemical reviews.

[16]  K. Wieghardt,et al.  Why Does the Active Form of Galactose Oxidase Possess a Diamagnetic Ground State? , 1998, Angewandte Chemie.

[17]  K. Wieghardt,et al.  Warum hat die aktive Form der Galactose-Oxidase einen diamagnetischen Grundzustand? , 1998 .

[18]  K. Hodgson,et al.  Catalytic galactose oxidase models: biomimetic Cu(II)-phenoxyl-radical reactivity. , 1998, Science.