Applications of ancestral protein reconstruction in understanding protein function: GFP-like proteins.

Recreating ancestral proteins in the laboratory increasingly is being used to study the evolutionary history of protein function. More efficient gene synthesis techniques and the decreasing costs of commercial oligosynthesis are making this approach both simpler and less expensive to perform. Developments in ancestral reconstruction methods, particularly more realistic likelihood models of molecular evolution, allow for the accurate reconstruction of more ancient proteins than previously possible. This chapter reviews phylogenetic methods of ancestral inference, strategies for investigating alternative reconstructions, gene synthesis, and design, and an application of these methods to the reconstruction of an ancestor in the green fluorescent protein family.

[1]  G. Georgiou,et al.  Effects of codon usage versus putative 5'-mRNA structure on the expression of Fusarium solani cutinase in the Escherichia coli cytoplasm. , 2003, Protein expression and purification.

[2]  N. Goldman,et al.  Comparison of models for nucleotide substitution used in maximum-likelihood phylogenetic estimation. , 1994, Molecular biology and evolution.

[3]  Wayne P. Maddison,et al.  Calculating the Probability Distributions of Ancestral States Reconstructed by Parsimony on Phylogenetic Trees , 1995 .

[4]  M. O. Dayhoff,et al.  Atlas of protein sequence and structure , 1965 .

[5]  M. Hasegawa,et al.  Model of amino acid substitution in proteins encoded by mitochondrial DNA , 1996, Journal of Molecular Evolution.

[6]  Ziheng Yang,et al.  PAML: a program package for phylogenetic analysis by maximum likelihood , 1997, Comput. Appl. Biosci..

[7]  David Posada,et al.  MODELTEST: testing the model of DNA substitution , 1998, Bioinform..

[8]  ohn,et al.  Potential Applications and Pitfalls of Bayesian Inference of Phylogeny , 2002 .

[9]  Terry W. Snell,et al.  Reconstructing ancestral character states: a critical reappraisal , 1998 .

[10]  S. Muse,et al.  A likelihood approach for comparing synonymous and nonsynonymous nucleotide substitution rates, with application to the chloroplast genome. , 1994, Molecular biology and evolution.

[11]  T. Buckley,et al.  Model misspecification and probabilistic tests of topology: evidence from empirical data sets. , 2002, Systematic biology.

[12]  Jonathan P. Bollback,et al.  Empirical and hierarchical Bayesian estimation of ancestral states. , 2001, Systematic biology.

[13]  Simon Whelan,et al.  A novel use of equilibrium frequencies in models of sequence evolution. , 2002, Molecular biology and evolution.

[14]  M. Matz,et al.  Evolution of Coral Pigments Recreated , 2004, Science.

[15]  Sadashiva S. Karnik,et al.  Structure-Function Studies on Bacteriorhodopsin , 1987 .

[16]  John P. Huelsenbeck,et al.  MRBAYES: Bayesian inference of phylogenetic trees , 2001, Bioinform..

[17]  M. Nei,et al.  A new method of inference of ancestral nucleotide and amino acid sequences. , 1995, Genetics.

[18]  N. Goldman,et al.  Codon-substitution models for heterogeneous selection pressure at amino acid sites. , 2000, Genetics.

[19]  Jianzhi Zhang,et al.  Complementary advantageous substitutions in the evolution of an antiviral RNase of higher primates , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[20]  J. Huelsenbeck Is the Felsenstein zone a fly trap? , 1997, Systematic biology.

[21]  M. Donoghue,et al.  Recreating a functional ancestral archosaur visual pigment. , 2002, Molecular biology and evolution.

[22]  B. Rannala,et al.  Phylogenetic methods come of age: testing hypotheses in an evolutionary context. , 1997, Science.

[23]  M. O. Dayhoff A model of evolutionary change in protein , 1978 .

[24]  A. Sparks,et al.  Molecular resurrection of an extinct ancestral promoter for mouse L1. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[25]  S. Wilton,et al.  Isolation and characterisation of keratin mRNA from the scale epidermis of the embryonic chick. , 1985, Biochimica et biophysica acta.

[26]  Ziheng Yang,et al.  Codon-substitution models to detect adaptive evolution that account for heterogeneous selective pressures among site classes. , 2002, Molecular biology and evolution.

[27]  K. Lukyanov,et al.  Diversity and evolution of the green fluorescent protein family , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[28]  X. Gu,et al.  Identification of essential amino acid changes in paired domain evolution using a novel combination of evolutionary analysis and in vitro and in vivo studies. , 2002, Molecular biology and evolution.

[29]  Ziheng Yang,et al.  Statistical methods for detecting molecular adaptation , 2000, Trends in Ecology & Evolution.

[30]  R. Nielsen,et al.  Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. , 2002, Molecular biology and evolution.

[31]  M. Hasegawa,et al.  Relative efficiencies of the maximum likelihood, maximum parsimony, and neighbor-joining methods for estimating protein phylogeny. , 1993, Molecular phylogenetics and evolution.

[32]  G. Sinclair,et al.  Synonymous codon usage bias and the expression of human glucocerebrosidase in the methylotrophic yeast, Pichia pastoris. , 2002, Protein expression and purification.

[33]  H. Munro,et al.  Mammalian protein metabolism , 1964 .

[34]  T. Sakmar,et al.  Synthetic gene technology: applications to ancestral gene reconstruction and structure-function studies of receptors. , 2002, Methods in enzymology.

[35]  Structure-function studies on bacteriorhodopsin. II. Improved expression of the bacterio-opsin gene in Escherichia coli. , 1987, The Journal of biological chemistry.

[36]  J. Lippincott-Schwartz,et al.  Development and Use of Fluorescent Protein Markers in Living Cells , 2003, Science.

[37]  M. Kimura A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences , 1980, Journal of Molecular Evolution.

[38]  R. Nielsen,et al.  Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. , 1998, Genetics.

[39]  Brian W. Matthews,et al.  Ancestral lysozymes reconstructed, neutrality tested, and thermostability linked to hydrocarbon packing , 1990, Nature.

[40]  Donoghue,et al.  Recreating ancestral proteins. , 2000, Trends in ecology & evolution.

[41]  Li Feng,et al.  Expression profiling using a hexamer-based universal microarray , 2004, Nature Biotechnology.

[42]  R Y Tsien,et al.  Wavelength mutations and posttranslational autoxidation of green fluorescent protein. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[43]  H. Kishino,et al.  Maximum likelihood inference of protein phylogeny and the origin of chloroplasts , 1990, Journal of Molecular Evolution.

[44]  L. Whitbread,et al.  The structure and expression of a gene encoding chick claw keratin. , 1991, Gene.

[45]  J. Felsenstein Evolutionary trees from DNA sequences: A maximum likelihood approach , 2005, Journal of Molecular Evolution.

[46]  Ziheng Yang Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: Approximate methods , 1994, Journal of Molecular Evolution.

[47]  N. Goldman,et al.  A codon-based model of nucleotide substitution for protein-coding DNA sequences. , 1994, Molecular biology and evolution.

[48]  J. Huelsenbeck Systematic bias in phylogenetic analysis: is the Strepsiptera problem solved? , 1998, Systematic biology.

[49]  S. Karnik,et al.  Angiotensin II-Forming Activity in a Reconstructed Ancestral Chymase , 1996, Science.

[50]  Michael P. Cummings,et al.  PAUP* [Phylogenetic Analysis Using Parsimony (and Other Methods)] , 2004 .

[51]  D C Shields,et al.  Codon usage patterns in Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Drosophila melanogaster and Homo sapiens; a review of the considerable within-species diversity. , 1988, Nucleic acids research.

[52]  M. Gouy,et al.  Inferring pattern and process: maximum-likelihood implementation of a nonhomogeneous model of DNA sequence evolution for phylogenetic analysis. , 1998, Molecular biology and evolution.

[53]  M. Matz,et al.  Molecular basis and evolutionary origins of color diversity in great star coral Montastraea cavernosa (Scleractinia: Faviida). , 2003, Molecular biology and evolution.

[54]  S. Lukyanov,et al.  GFP-like proteins as ubiquitous metazoan superfamily: evolution of functional features and structural complexity. , 2004, Molecular biology and evolution.

[55]  M. P. Cummings PHYLIP (Phylogeny Inference Package) , 2004 .

[56]  Joseph P. Bielawski,et al.  Maximum likelihood methods for detecting adaptive evolution after gene duplication , 2004, Journal of Structural and Functional Genomics.

[57]  C. Stewart Active ancestral molecules , 1995, Nature.

[58]  S. Tavaré Some probabilistic and statistical problems in the analysis of DNA sequences , 1986 .

[59]  William R. Taylor,et al.  The rapid generation of mutation data matrices from protein sequences , 1992, Comput. Appl. Biosci..

[60]  M. O. Dayhoff,et al.  22 A Model of Evolutionary Change in Proteins , 1978 .

[61]  Z. Yang,et al.  Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. , 1998, Molecular biology and evolution.

[62]  S. Benner,et al.  Inferring the palaeoenvironment of ancient bacteria on the basis of resurrected proteins , 2003, Nature.

[63]  H. Khorana,et al.  Total synthesis of a gene for bovine rhodopsin. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[64]  Joseph W. Thornton,et al.  Resurrecting ancient genes: experimental analysis of extinct molecules , 2004, Nature Reviews Genetics.

[65]  David Crews,et al.  Resurrecting the Ancestral Steroid Receptor: Ancient Origin of Estrogen Signaling , 2003, Science.

[66]  Konstantin A Lukyanov,et al.  Family of the green fluorescent protein: journey to the end of the rainbow. , 2002, BioEssays : news and reviews in molecular, cellular and developmental biology.

[67]  P. Lewis Maximum Likelihood as an Alternative to Parsimony for Inferring Phylogeny Using Nucleotide Sequence Data , 1998 .

[68]  T. Jukes CHAPTER 24 – Evolution of Protein Molecules , 1969 .

[69]  K. E. Omland The Assumptions and Challenges of Ancestral State Reconstructions , 1999 .

[70]  M. Hasegawa,et al.  Phylogenetic place of guinea pigs: no support of the rodent-polyphyly hypothesis from maximum-likelihood analyses of multiple protein sequences. , 1994, Molecular biology and evolution.

[71]  Richard A. Goldstein,et al.  Probabilistic reconstruction of ancestral protein sequences , 1996, Journal of Molecular Evolution.

[72]  Steven A. Benner,et al.  Reconstructing the evolutionary history of the artiodactyl ribonuclease superfamily , 1995, Nature.

[73]  J. Kane,et al.  Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli. , 1995, Current opinion in biotechnology.

[74]  Nick Goldman,et al.  Statistical tests of models of DNA substitution , 1993, Journal of Molecular Evolution.