Temporal Bayesian Networks for Scenario Recognition

This work presents an automatic scenario recognition system for video sequence interpretation. The recognition algorithm is based on a Bayesian Networks approach. The model of scenario contains two main layers. The first one enables to highlight atemporal events from the observed visual features. The second layer is focused on the temporal reasoning stage. The temporal layer integrates an event based approach in the framework of the Bayesian Networks. The temporal Bayesian network tracks lifespan of relevant events highlighted from the first layer. Then it estimates qualitative and quantitative relations between temporal events helpful for the recognition task. The global recognition algorithm is illustrated over real indoor images sequences for an abandoned baggage scenario.

[1]  Avi Pfeffer,et al.  Object-Oriented Bayesian Networks , 1997, UAI.

[2]  Keiji Kanazawa,et al.  A model for reasoning about persistence and causation , 1989 .

[3]  Allen R. Hanson,et al.  Computer Vision Systems , 1978 .

[4]  Tieniu Tan,et al.  Agent orientated annotation in model based visual surveillance , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[5]  Alex Pentland,et al.  A Bayesian Computer Vision System for Modeling Human Interactions , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Ramakant Nevatia,et al.  Multi-agent event recognition , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[7]  Alex Pentland,et al.  A Bayesian Computer Vision System for Modeling Human Interaction , 1999, ICVS.

[8]  Aaron F. Bobick,et al.  Visual recognition of multi-agent action using binary temporal relations , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[9]  Bernadette Bouchon-Meunier,et al.  Reconnaissance d'activités à l'aide de graphes temporels flous , 1997 .

[10]  Cina Motamed,et al.  Motion detection and tracking using belief indicators for an automatic visual-surveillance system , 2006, Image Vis. Comput..

[11]  James F. Allen An Interval-Based Representation of Temporal Knowledge , 1981, IJCAI.

[12]  Monique Thonnat,et al.  Recurrent Bayesian Network for the Recognition of Human Behaviors from Video , 2003, ICVS.

[13]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[14]  Ann E. Nicholson,et al.  The Data Association Problem when Monitoring Robot Vehicles Using Dynamic Belief Networks , 1992, ECAI.

[15]  Alex Pentland,et al.  Real-time American Sign Language recognition from video using hidden Markov models , 1995 .

[16]  Hilary Buxton,et al.  Learning and understanding dynamic scene activity: a review , 2003, Image Vis. Comput..

[17]  Luis Enrique Sucar,et al.  A Temporal Bayesian Network for Diagnosis and Prediction , 1999, UAI.

[18]  Andrew P. Sage,et al.  Uncertainty in Artificial Intelligence , 1987, IEEE Transactions on Systems, Man, and Cybernetics.

[19]  Ann E. Nicholson,et al.  Sensor Validation Using Dynamic Belief Networks , 1992, UAI.