Extreme Events: Mechanisms and Prediction

Extreme events, such as rogue waves, earthquakes and stock market crashes, occur spontaneously in many dynamical systems. Because of their usually adverse consequences, quantification, prediction and mitigation of extreme events are highly desirable. Here, we review several aspects of extreme events in phenomena described by high-dimensional, chaotic dynamical systems. We specially focus on two pressing aspects of the problem: (i) Mechanisms underlying the formation of extreme events and (ii) Real-time prediction of extreme events. For each aspect, we explore methods relying on models, data or both. We discuss the strengths and limitations of each approach as well as possible future research directions.

[1]  Zi-Gang Huang,et al.  Extreme events in multilayer, interdependent complex networks and control , 2015, Scientific Reports.

[2]  N. Hoffmann,et al.  Experimental observation of dark solitons on the surface of water. , 2013, Physical review letters.

[3]  Eugene M. Izhikevich,et al.  Neural excitability, Spiking and bursting , 2000, Int. J. Bifurc. Chaos.

[4]  Francesco Fedele,et al.  On Oceanic Rogue Waves , 2015, 1501.03370.

[5]  Clarence W. Rowley,et al.  Variants of Dynamic Mode Decomposition: Boundary Condition, Koopman, and Fourier Analyses , 2012, J. Nonlinear Sci..

[6]  Zi-Gang Huang,et al.  Controlling extreme events on complex networks , 2014, Scientific Reports.

[7]  Carl Scarrott,et al.  A Review of Extreme Value Threshold Estimation and Uncertainty Quantification , 2012 .

[8]  S. Varadhan,et al.  Large deviations , 2019, Graduate Studies in Mathematics.

[9]  George Haller,et al.  Multi-pulse jumping orbits and homoclinic trees in a modal truncation of the damped-forced nonlinear Schro¨dinger equation , 1995 .

[10]  David M. Anderson,et al.  Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch , 2002, Nature.

[11]  Albert C. Pan,et al.  Finding transition pathways using the string method with swarms of trajectories. , 2008, The journal of physical chemistry. B.

[12]  Karin Rothschild,et al.  Seismic Waves And Sources , 2016 .

[13]  B. van der Pol,et al.  The Nonlinear Theory of Electric Oscillations , 1934, Proceedings of the Institute of Radio Engineers.

[14]  Meinhard E. Mayer,et al.  Navier-Stokes Equations and Turbulence , 2008 .

[15]  Alexander B Neiman,et al.  Synchronization of noise-induced bursts in noncoupled sensory neurons. , 2002, Physical review letters.

[16]  R. M. Noyes,et al.  Oscillations in chemical systems. IV. Limit cycle behavior in a model of a real chemical reaction , 1974 .

[17]  Eugene P. Wigner,et al.  The transition state method , 1938 .

[18]  Massimo Marchiori,et al.  Model for cascading failures in complex networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  H. Eyring The Activated Complex in Chemical Reactions , 1935 .

[20]  Extreme Events in Finance: A Handbook of Extreme Value Theory and Its Applications , 2016 .

[21]  Eric Vanden-Eijnden,et al.  Transition-path theory and path-finding algorithms for the study of rare events. , 2010, Annual review of physical chemistry.

[22]  H. Touchette The large deviation approach to statistical mechanics , 2008, 0804.0327.

[23]  N. Hoffmann,et al.  Rogue wave observation in a water wave tank. , 2011, Physical review letters.

[24]  Gino Biondini,et al.  A Method to Compute Statistics of Large, Noise-Induced Perturbations of Nonlinear Schrödinger Solitons , 2008, SIAM Rev..

[25]  B. Kibler,et al.  Nonconservative higher-order hydrodynamic modulation instability. , 2017, Physical review. E.

[26]  C. Letellier,et al.  Unstable periodic orbits and templates of the Rossler system: Toward a systematic topological characterization. , 1995, Chaos.

[27]  Alexander Tovbis,et al.  Universality for the Focusing Nonlinear Schrödinger Equation at the Gradient Catastrophe Point: Rational Breathers and Poles of the Tritronquée Solution to Painlevé I , 2010, 1004.1828.

[28]  A. Obukhov Kolmogorov flow and laboratory simulation of it , 1983 .

[29]  John Guckenheimer,et al.  Singular Hopf Bifurcation in Systems with Two Slow Variables , 2008, SIAM J. Appl. Dyn. Syst..

[30]  M. Webb,et al.  Quantification of modelling uncertainties in a large ensemble of climate change simulations , 2004, Nature.

[31]  P. Cvitanović,et al.  Periodic orbits as the skeleton classical and quantum chaos , 1991 .

[32]  Anthony C. Davison,et al.  Statistics of Extremes , 2015, International Encyclopedia of Statistical Science.

[33]  R. Téman,et al.  Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations , 1988 .

[34]  H. Bernhard Schlegel,et al.  An improved algorithm for reaction path following , 1989 .

[35]  Peter E. Kloeden,et al.  Nonautonomous Dynamical Systems , 2011 .

[36]  M. R. Leadbetter,et al.  On Exceedance Point Processes for Stationary Sequences under Mild Oscillation Restrictions , 1989 .

[37]  Ana Cristina Moreira Freitas,et al.  Speed of convergence for laws of rare events and escape rates , 2014, 1401.4206.

[38]  Balth. van der Pol Jun. LXXXVIII. On “relaxation-oscillations” , 1926 .

[39]  Hugo Touchette,et al.  A basic introduction to large deviations: Theory, applications, simulations , 2011, 1106.4146.

[40]  José A. Langa,et al.  Attractors for infinite-dimensional non-autonomous dynamical systems , 2012 .

[41]  M. Scheffer,et al.  Slowing down as an early warning signal for abrupt climate change , 2008, Proceedings of the National Academy of Sciences.

[42]  Fabio Baronio,et al.  Versatile rogue waves in scalar, vector, and multidimensional nonlinear systems , 2017 .

[43]  D. Ruelle Chaotic evolution and strange attractors , 1989 .

[44]  Michael S. Jolly,et al.  INTEGRAL MANIFOLDS AND INERTIAL MANIFOLDS FOR DISSIPATIVE PARTIAL DIFFERENTIAL EQUATIONS: (Applied Mathematical Sciences 70) , 1990 .

[45]  John Guckenheimer,et al.  Mixed-Mode Oscillations with Multiple Time Scales , 2012, SIAM Rev..

[46]  Konstantin Turitsyn,et al.  Stability and control of ad hoc dc microgrids , 2016, 2016 IEEE 55th Conference on Decision and Control (CDC).

[47]  Fabio Baronio,et al.  Baseband modulation instability as the origin of rogue waves , 2015, 1502.03915.

[48]  H. Yuen,et al.  Nonlinear deep water waves: Theory and experiment , 1975 .

[49]  Y. Kuramoto,et al.  Dephasing and bursting in coupled neural oscillators. , 1995, Physical review letters.

[50]  K. Dysthe,et al.  Note on a modification to the nonlinear Schrödinger equation for application to deep water waves , 1979, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[51]  M. Latif,et al.  El Niño/Southern Oscillation response to global warming , 2009, Proceedings of the National Academy of Sciences.

[52]  Kenneth Showalter,et al.  Chemical waves and patterns , 1995 .

[53]  D. Easterling,et al.  Observed variability and trends in extreme climate events: A brief review , 2000 .

[54]  I. Mezic,et al.  Nonlinear Koopman Modes and a Precursor to Power System Swing Instabilities , 2012, IEEE Transactions on Power Systems.

[55]  Carlo Marchioro,et al.  An example of absence of turbulence for any Reynolds number , 1986 .

[56]  L. Haan,et al.  Extreme value theory : an introduction , 2006 .

[57]  Lawrence Sirovich,et al.  An investigation of chaotic Kolmogorov flows , 1990 .

[58]  Zhenya Yan,et al.  Dynamics of higher-order rational solitons for the nonlocal nonlinear Schrödinger equation with the self-induced parity-time-symmetric potential. , 2016, Chaos.

[59]  Eric Vanden-Eijnden,et al.  Transition path theory. , 2014, Advances in experimental medicine and biology.

[60]  David Chandler,et al.  Statistical mechanics of isomerization dynamics in liquids and the transition state approximation , 1978 .

[61]  Stefan Ulbrich,et al.  Optimization with PDE Constraints , 2008, Mathematical modelling.

[62]  D. J. Benney,et al.  The Propagation of Nonlinear Wave Envelopes , 1967 .

[63]  DIRK LEBIEDZ,et al.  A Variational Principle for Computing Slow Invariant Manifolds in Dissipative Dynamical Systems , 2009, SIAM J. Sci. Comput..

[64]  D. Sornette,et al.  Dragon-kings: Mechanisms, statistical methods and empirical evidence , 2012, 1205.1002.

[65]  Themistoklis P. Sapsis,et al.  Probabilistic Description of Extreme Events in Intermittently Unstable Dynamical Systems Excited by Correlated Stochastic Processes , 2014, SIAM/ASA J. Uncertain. Quantification.

[66]  S. Varadhan,et al.  Asymptotic evaluation of certain Markov process expectations for large time , 1975 .

[67]  Arnéodo,et al.  Crisis-induced intermittent bursting in reaction-diffusion chemical systems. , 1992, Physical review letters.

[68]  J. Soto-Crespo,et al.  Rogue waves and rational solutions of the nonlinear Schrödinger equation. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[69]  Vladimir E. Zakharov,et al.  Stability of periodic waves of finite amplitude on the surface of a deep fluid , 1968 .

[70]  Paul Wilmott,et al.  Paul Wilmott Introduces Quantitative Finance , 2000 .

[71]  Gary J. Chandler,et al.  Invariant recurrent solutions embedded in a turbulent two-dimensional Kolmogorov flow , 2013, Journal of Fluid Mechanics.

[72]  K. Lehnertz,et al.  Route to extreme events in excitable systems. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[73]  Mohammad Farazmand,et al.  Dynamical indicators for the prediction of bursting phenomena in high-dimensional systems. , 2016, Physical review. E.

[74]  R. Fisher,et al.  Limiting forms of the frequency distribution of the largest or smallest member of a sample , 1928, Mathematical Proceedings of the Cambridge Philosophical Society.

[75]  Eric Vanden-Eijnden,et al.  Rogue waves and large deviations in deep sea , 2017, Proceedings of the National Academy of Sciences.

[76]  J. Yorke,et al.  Chaos: An Introduction to Dynamical Systems , 1997 .

[77]  Juro Horiuti,et al.  On the Statistical Mechanical Treatment of the Absolute Rate of Chemical Reaction , 1938 .

[78]  M. Donelan,et al.  The Making of the Andrea Wave and other Rogues , 2017, Scientific Reports.

[79]  J. J. Stoker Water Waves: The Mathematical Theory with Applications , 1957 .

[80]  E. Vanden-Eijnden,et al.  Data Assimilation in the Low Noise Regime with Application to the Kuroshio , 2012, 1202.4952.

[81]  Cvitanovic,et al.  Periodic-orbit quantization of chaotic systems. , 1989, Physical review letters.

[82]  C. Ropelewski,et al.  Global and Regional Scale Precipitation Patterns Associated with the El Niño/Southern Oscillation , 1987 .

[83]  Mohammad Farazmand,et al.  Reduced-order prediction of rogue waves in two-dimensional deep-water waves , 2016, J. Comput. Phys..

[84]  John Guckenheimer,et al.  Mixed-Mode Oscillations of El Niño–Southern Oscillation , 2015, 1511.07472.

[85]  H. Dijkstra Nonlinear Climate Dynamics , 2013 .

[86]  Nando de Freitas,et al.  An Introduction to Sequential Monte Carlo Methods , 2001, Sequential Monte Carlo Methods in Practice.

[87]  Jorge Milhazes Freitas,et al.  On the link between dependence and independence in extreme value theory for dynamical systems , 2008 .

[88]  G. S. Watson,et al.  Extreme Values in Samples from $m$-Dependent Stationary Stochastic Processes , 1954 .

[89]  T. Sapsis,et al.  Reduced-order precursors of rare events in unidirectional nonlinear water waves , 2015, Journal of Fluid Mechanics.

[90]  Dimitri P. Bertsekas,et al.  Constrained Optimization and Lagrange Multiplier Methods , 1982 .

[91]  Tailen Hsing,et al.  Calculating the extremal index for a class of stationary sequences , 1991, Advances in Applied Probability.

[92]  Philip Holmes,et al.  Interaction of adjacent bursts in the wall region , 1994 .

[93]  Neil Fenichel Geometric singular perturbation theory for ordinary differential equations , 1979 .

[94]  Eric Forgoston,et al.  A Primer on Noise-Induced Transitions in Applied Dynamical Systems , 2017, SIAM Rev..

[95]  Yan‐Chow Ma,et al.  The Perturbed Plane‐Wave Solutions of the Cubic Schrödinger Equation , 1979 .

[96]  Katrin Hessner,et al.  Inversion of Marine Radar Images for Surface Wave Analysis , 2004 .

[97]  R. Grigoriev,et al.  Forecasting Fluid Flows Using the Geometry of Turbulence. , 2016, Physical review letters.

[98]  T. Sapsis,et al.  Reduced-order description of transient instabilities and computation of finite-time Lyapunov exponents. , 2017, Chaos.

[99]  G. Ciccotti,et al.  String method in collective variables: minimum free energy paths and isocommittor surfaces. , 2006, The Journal of chemical physics.

[100]  D. Sornette Dragon-Kings, Black Swans and the Prediction of Crises , 2009, 0907.4290.

[101]  Malcolm R Leadbetter,et al.  Extremes and local dependence in stationary sequences , 1983 .

[102]  Amin Chabchoub,et al.  Tracking Breather Dynamics in Irregular Sea State Conditions. , 2016, Physical review letters.

[103]  Max Henrion,et al.  Uncertainty: A Guide to Dealing with Uncertainty in Quantitative Risk and Policy Analysis , 1990 .

[104]  John Guckenheimer,et al.  Chaos in the Hodgkin-Huxley Model , 2002, SIAM J. Appl. Dyn. Syst..

[105]  N. Hoffmann,et al.  Experimental study of spatiotemporally localized surface gravity water waves. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[106]  W. E,et al.  Towards a Theory of Transition Paths , 2006 .

[107]  Xi Fang,et al.  3. Full Four-channel 6.3-gb/s 60-ghz Cmos Transceiver with Low-power Analog and Digital Baseband Circuitry 7. Smart Grid — the New and Improved Power Grid: a Survey , 2022 .

[108]  Thomas C. Fu,et al.  Radar Measurement of Ocean Waves , 2011 .

[109]  Pierre Gaspard,et al.  Mixed-mode and chaotic oscillations in a simple model of an electrochemical oscillator , 1991 .

[110]  Malcolm R Leadbetter,et al.  On the exceedance point process for a stationary sequence , 1988 .

[111]  Philip Holmes,et al.  Suppression of bursting , 1997, Autom..

[112]  Van den Broeck C,et al.  Noise-induced nonequilibrium phase transition. , 1994, Physical review letters.

[113]  R. Herzog,et al.  Algorithms for PDE‐constrained optimization , 2010 .

[114]  Eric Vanden-Eijnden,et al.  Simplified and improved string method for computing the minimum energy paths in barrier-crossing events. , 2007, The Journal of chemical physics.

[115]  Katrin Hessner,et al.  Detection of spatio-temporal wave grouping properties by using temporal sequences of X-band radar images of the sea surface , 2013 .

[116]  G. Ermentrout,et al.  Parabolic bursting in an excitable system coupled with a slow oscillation , 1986 .

[117]  Liming Ling,et al.  Quantitative relations between modulational instability and several well-known nonlinear excitations , 2014, 1410.7536.

[118]  N. Akhmediev,et al.  Modulation instability and periodic solutions of the nonlinear Schrödinger equation , 1986 .

[119]  E. Vanden-Eijnden,et al.  String method for the study of rare events , 2002, cond-mat/0205527.

[120]  George Haller,et al.  Localized Instability and Attraction along Invariant Manifolds , 2010, SIAM J. Appl. Dyn. Syst..

[121]  S. Carpenter,et al.  Methods for Detecting Early Warnings of Critical Transitions in Time Series Illustrated Using Simulated Ecological Data , 2012, PloS one.

[122]  Pierre Suret,et al.  Universality of the Peregrine Soliton in the Focusing Dynamics of the Cubic Nonlinear Schrödinger Equation. , 2017, Physical review letters.

[123]  Harald Cram'er,et al.  Sur un nouveau théorème-limite de la théorie des probabilités , 2018 .

[124]  Tsunenobu Yamamoto,et al.  Quantum Statistical Mechanical Theory of the Rate of Exchange Chemical Reactions in the Gas Phase , 1960 .

[125]  Genta Kawahara,et al.  Periodic motion embedded in plane Couette turbulence: regeneration cycle and burst , 2001, Journal of Fluid Mechanics.

[126]  Roberto Morandotti,et al.  Real-time measurements of spontaneous breathers and rogue wave events in optical fibre modulation instability , 2016, Nature Communications.

[127]  S. Carpenter,et al.  Early-warning signals for critical transitions , 2009, Nature.

[128]  T. Brooke Benjamin,et al.  The disintegration of wave trains on deep water Part 1. Theory , 1967, Journal of Fluid Mechanics.

[129]  Themistoklis P. Sapsis,et al.  Extreme events and their optimal mitigation in nonlinear structural systems excited by stochastic loads: Application to ocean engineering systems , 2017, ArXiv.

[130]  Hiroaki Ono,et al.  Nonlinear Modulation of Gravity Waves , 1972 .

[131]  S.,et al.  Multi-pulse jumping orbits and homoclinic trees in a modal truncation of the damped-forced nonlinear Schr 6 dinger equation , 2002 .

[132]  John Rinzel,et al.  A Formal Classification of Bursting Mechanisms in Excitable Systems , 1987 .

[133]  J. Swift,et al.  Instability of the Kolmogorov flow in a soap film. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[134]  C. Dellago,et al.  Transition Path Sampling , 2005 .

[135]  George Haller,et al.  Instabilities in the dynamics of neutrally buoyant particles , 2008 .

[136]  A. Timmermann,et al.  A Nonlinear Theory for El Niño Bursting , 2003 .

[137]  A. Arneodo,et al.  Modeling Front Pattern Formation and Intermittent Bursting Phenomena in the Couette Flow Reactor , 1995 .

[138]  Pierre Gaspard,et al.  What can we learn from homoclinic orbits in chaotic dynamics? , 1983 .

[139]  S. Wiggins Normally Hyperbolic Invariant Manifolds in Dynamical Systems , 1994 .

[140]  Michael Chertkov,et al.  Options for Control of Reactive Power by Distributed Photovoltaic Generators , 2010, Proceedings of the IEEE.

[141]  B. C. Garrett,et al.  Current status of transition-state theory , 1983 .

[142]  Lawrence R. Pratt,et al.  A statistical method for identifying transition states in high dimensional problems , 1986 .

[143]  Linda Steg,et al.  The Spreading of Disorder , 2008, Science.

[144]  Valerio Lucarini,et al.  Extremes and Recurrence in Dynamical Systems , 2016, 1605.07006.

[145]  P. Holmes,et al.  Suppression of bursting , 1997, Autom..

[146]  Malcolm R Leadbetter,et al.  On extreme values in stationary sequences , 1974 .

[147]  M. G. Evans,et al.  Some applications of the transition state method to the calculation of reaction velocities, especially in solution , 1935 .

[148]  Allan Drazen,et al.  Political Economy in Macroeconomics , 2018 .

[149]  S. R. S. Varadhan,et al.  Special invited paper. Large deviations , 2008, 0804.2330.

[150]  K. Laidler,et al.  Development of transition-state theory , 1983 .

[151]  Christopher K. R. T. Jones,et al.  Tracking invariant manifolds with di erential forms in singularly per-turbed systems , 1994 .

[152]  Werner Horsthemke,et al.  Noise-induced transitions , 1984 .

[153]  Arindam Saha,et al.  Extreme events in FitzHugh-Nagumo oscillators coupled with two time delays. , 2017, Physical review. E.

[154]  M. Farazmand An adjoint-based approach for finding invariant solutions of Navier–Stokes equations , 2015, Journal of Fluid Mechanics.

[155]  Andrew J. Majda,et al.  Filtering Complex Turbulent Systems , 2012 .

[156]  O. Junge,et al.  On the Approximation of Complicated Dynamical Behavior , 1999 .

[157]  Andrew J. Majda,et al.  Information theory and stochastics for multiscale nonlinear systems , 2005 .

[158]  O. Rössler An equation for continuous chaos , 1976 .

[159]  John Guckenheimer,et al.  A Fast Method for Approximating Invariant Manifolds , 2004, SIAM J. Appl. Dyn. Syst..

[160]  Karsten Trulsen,et al.  On weakly nonlinear modulation of waves on deep water , 2000 .

[161]  T. Sapsis,et al.  A variational approach to probing extreme events in turbulent dynamical systems , 2017, Science Advances.

[162]  N. Hoffmann,et al.  Super Rogue Waves: Observation of a Higher-Order Breather in Water Waves , 2012 .

[163]  R. M. Loynes,et al.  Extreme Values in Uniformly Mixing Stationary Stochastic Processes , 1965 .

[164]  Klaus Lehnertz,et al.  Extreme events in excitable systems and mechanisms of their generation. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[165]  Liam D. Bailey,et al.  Learning from single extreme events , 2017, Philosophical Transactions of the Royal Society B: Biological Sciences.

[166]  S. R. Lopes,et al.  Control of extreme events in the bubbling onset of wave turbulence. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[167]  Gino Biondini,et al.  A Method to Compute Statistics of Large, Noise-Induced Perturbations of Nonlinear Schrödinger Solitons , 2007, SIAM Rev..

[168]  David Chandler,et al.  Transition path sampling: throwing ropes over rough mountain passes, in the dark. , 2002, Annual review of physical chemistry.

[169]  J.,et al.  Earthquake prediction: a critical review , 1997 .

[170]  R. Kraichnan Inertial-range transfer in two- and three-dimensional turbulence , 1971, Journal of Fluid Mechanics.

[171]  Vladimir Kossobokov,et al.  Extreme events: dynamics, statistics and prediction , 2011 .

[172]  M. Fréchet Sur la loi de probabilité de l'écart maximum , 1928 .

[173]  Holger Kantz,et al.  Data-driven prediction and prevention of extreme events in a spatially extended excitable system. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[174]  M. Hirsch,et al.  Differential Equations, Dynamical Systems, and an Introduction to Chaos , 2003 .

[175]  Yasuhiro Ohta,et al.  Rogue waves in the Davey-Stewartson I equation. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[176]  D. H. Peregrine,et al.  Water waves, nonlinear Schrödinger equations and their solutions , 1983, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[177]  B. Gnedenko Sur La Distribution Limite Du Terme Maximum D'Une Serie Aleatoire , 1943 .

[178]  David G. Rand,et al.  Dynamic social networks promote cooperation in experiments with humans , 2011, Proceedings of the National Academy of Sciences.

[179]  J. Gollub,et al.  Dynamic Topology in Spatiotemporal Chaos , 2008 .

[180]  Christopher Jones,et al.  Geometric singular perturbation theory , 1995 .

[181]  B. Ermentrout Neural networks as spatio-temporal pattern-forming systems , 1998 .

[182]  John Guckenheimer,et al.  A Survey of Methods for Computing (un)Stable Manifolds of Vector Fields , 2005, Int. J. Bifurc. Chaos.

[183]  Miro Erkintalo,et al.  Instabilities, breathers and rogue waves in optics , 2014, Nature Photonics.

[184]  H. K. Moffatt Note on the triad interactions of homogeneous turbulence , 2014, Journal of Fluid Mechanics.

[185]  Thomas C. Fu,et al.  Shipboard Measurement of Ocean Waves , 2011 .

[186]  Jean-Philippe Lessard,et al.  Parameterization of Invariant Manifolds for Periodic Orbits I: Efficient Numerics via the Floquet Normal Form , 2015, SIAM J. Appl. Dyn. Syst..

[187]  D. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .

[188]  Themistoklis P Sapsis,et al.  Unsteady evolution of localized unidirectional deep-water wave groups. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[189]  Didier Sornette,et al.  Predictability and suppression of extreme events in a chaotic system. , 2013, Physical review letters.

[190]  L. Shemer,et al.  Peregrine breather revisited , 2013 .

[191]  Manuel A. Andrade,et al.  Physical mechanisms of the Rogue Wave phenomenon , 2022 .

[192]  Eugene M. Izhikevich,et al.  Simple model of spiking neurons , 2003, IEEE Trans. Neural Networks.

[193]  Christine M. Anderson-Cook,et al.  Book review: quantitative risk management: concepts, techniques and tools, revised edition, by A.F. McNeil, R. Frey and P. Embrechts. Princeton University Press, 2015, ISBN 978-0-691-16627-8, xix + 700 pp. , 2017, Extremes.

[194]  Philipp Metzner,et al.  Illustration of transition path theory on a collection of simple examples. , 2006, The Journal of chemical physics.

[195]  N. Kevlahan,et al.  Controlling the dual cascade of two-dimensional turbulence , 2009, Journal of Fluid Mechanics.

[196]  K. A. Connors Chemical Kinetics: The Study of Reaction Rates in Solution , 1990 .

[197]  S. Meacham Low-frequency variability in the wind-driven circulation , 2000 .