Classical and Bayesian inference on progressive‐stress accelerated life testing for the extension of the exponential distribution under progressive type‐II censoring

In this paper, a progressive-stress accelerated life test under progressive type-II censoring is considered. The cumulative exposure model is assumed when the lifetime of test units follows an extension of the exponential distribution. The maximum likelihood and Bayes estimates of the model parameters are obtained. The approximate and credible confidence intervals of the estimators are derived. Furthermore, a real lifetime data set is analyzed to illustrate the proposed procedures. Finally, the simulation studies are used to compare between 2 different designs of the progressive-stress test (simple and multiple ramp-stress tests).

[1]  N. Balakrishnan,et al.  Progressive Censoring: Theory, Methods, and Applications , 2000 .

[2]  Xiang-kang Yin,et al.  Some Aspects of Accelerated Life Testing by Progressive Stress , 1987, IEEE Transactions on Reliability.

[3]  Essam Khalaf Al-Hussaini,et al.  Inference for a progressive stress model from Weibull distribution under progressive type-II censoring , 2011, J. Comput. Appl. Math..

[4]  배도선,et al.  Optimum Simple Ramp Tests for the Weibull Distribution and Type I Censoring , 1991 .

[5]  Alaa H. Abdel-Hamid,et al.  One-sample Bayesian prediction intervals based on progressively type-II censored data from the half-logistic distribution under progressive stress model , 2015 .

[6]  Narayanaswamy Balakrishnan,et al.  The Art of Progressive Censoring , 2014 .

[7]  W. Nelson,et al.  Optimum Simple Step-Stress Plans for Accelerated Life Testing , 1983, IEEE Transactions on Reliability.

[8]  S. E. Abu-Youssef,et al.  Estimation in Step-Stress Accelerated Life Tests for Weibull Distribution with Progressive First-Failure Censoring , 2014 .

[9]  Yada Zhu,et al.  Optimal design and equivalency of accelerated life testing plans , 2010 .

[10]  H. M. Moustafa,et al.  Bayes Inference in Constant Partially Accelerated Life Tests for the Generalized Exponential Distribution with Progressive Censoring , 2014 .

[11]  Ewan Macarthur,et al.  Accelerated Testing: Statistical Models, Test Plans, and Data Analysis , 1990 .

[12]  M. Pagano,et al.  Survival analysis. , 1996, Nutrition.

[13]  Saralees Nadarajah,et al.  An extension of the exponential distribution , 2011 .

[14]  S. E. Abu-Youssef,et al.  Parametric inference on step-stress accelerated life testing for the extension of exponential distribution under progressive type-II censoring , 2016 .

[15]  Alaa H. Abdel-Hamid,et al.  Progressive stress accelerated life tests under finite mixture models , 2007 .

[16]  N. Balakrishnan,et al.  Point and Interval Estimation for a Simple Step-Stress Model with Type-II Censoring , 2007 .

[17]  Do Sun Bai,et al.  Optimum simple step-stress accelerated life tests with censoring , 1989 .

[18]  Cm Kim,et al.  ANALYSES OF ACCELERATED LIFE TEST DATA UNDER TWO FAILURE MODES , 2002 .

[19]  Alan Watkins,et al.  On constant stress accelerated life tests terminated by Type II censoring at one of the stress levels , 2008 .

[20]  S. E. Abu-Youssef,et al.  Optimal Plans of Constant-Stress Accelerated Life Tests for the Lindley Distribution , 2017 .

[21]  S. E. Abu-Youssef,et al.  Estimation in Step-Stress Accelerated Life Tests for Power Generalized Weibull Distribution with Progressive Censoring , 2015 .

[22]  Alaa H. Abdel-Hamid,et al.  Inference on progressive-stress model for the exponentiated exponential distribution under type-II progressive hybrid censoring , 2015 .

[23]  N. Balakrishnan,et al.  Optimal step-stress test under progressive type-I censoring , 2004, IEEE Transactions on Reliability.

[24]  Narayanaswamy Balakrishnan,et al.  The Art of Progressive Censoring: Applications to Reliability and Quality , 2014 .

[25]  Satyanshu K. Upadhyay,et al.  A Bayes analysis of modified Weibull distribution via Markov chain Monte Carlo simulation , 2010 .

[26]  Yincai Tang,et al.  Optimal Multiple Constant-Stress Accelerated Life Tests for Generalized Exponential Distribution , 2014, Commun. Stat. Simul. Comput..

[27]  S. E. Abu-Youssef,et al.  Estimation in constant-stress accelerated life tests for extension of the exponential distribution under progressive censoring , 2016 .