Winds of opportunity: The effects of wind on intertidal flat accretion

[1]  Z. Dai,et al.  Storms dominate the erosion of the Yangtze Delta and southward sediment transport. , 2023, Science bulletin.

[2]  A. Engels,et al.  Adaptation timescales of estuarine systems to human interventions , 2023, Frontiers in Earth Science.

[3]  S. Temmerman,et al.  Marshes and Mangroves as Nature-Based Coastal Storm Buffers. , 2022, Annual review of marine science.

[4]  K. Bryan,et al.  Modeling the effects of aerial temperature and exposure period on intertidal mudflat profiles , 2022, Continental Shelf Research.

[5]  C. Renshaw,et al.  Rapid changes to global river suspended sediment flux by humans , 2022, Science.

[6]  P. K. Tonnon,et al.  Field measurements and numerical modelling of wind-driven exchange flows in a tidal inlet system in the Dutch Wadden Sea , 2021, Ocean & Coastal Management.

[7]  D. S. Maren,et al.  The contribution of sand and mud to infilling of tidal basins in response to a closure dam , 2021 .

[8]  H. Middelkoop,et al.  Ecological consequences of sea level rise and flood protection strategies in shallow coastal systems: A quick-scan barcoding approach , 2021 .

[9]  S. Pearson,et al.  Characterizing the Composition of Sand and Mud Suspensions in Coastal \& Estuarine Environments using Combined Optical and Acoustic Measurements , 2021, Journal of Geophysical Research: Oceans.

[10]  M. Zhang,et al.  Tidal-flat reclamation aggravates potential risk from storm impacts , 2021, Coastal Engineering.

[11]  J. Winterwerp,et al.  The Impact of Wind on Flow and Sediment Transport over Intertidal Flats , 2020, Journal of Marine Science and Engineering.

[12]  Bregje K. van Wesenbeeck,et al.  Historic storms and the hidden value of coastal wetlands for nature-based flood defence , 2020, Nature Sustainability.

[13]  S. Temmerman,et al.  Role of delta‐front erosion in sustaining salt marshes under sea‐level rise and fluvial sediment decline , 2020, Limnology and Oceanography.

[14]  P. K. Tonnon,et al.  Measurements of hydrodynamics, sediment, morphology and benthos on Ameland ebb-tidal delta and lower shoreface , 2020, Earth System Science Data.

[15]  P. Ciais,et al.  Global trends in water and sediment fluxes of the world's large rivers. , 2020, Science bulletin.

[16]  S. Pearson,et al.  Understanding sediment bypassing processes through analysis of high-frequency observations of Ameland Inlet, the Netherlands , 2019, Marine Geology.

[17]  S. Temmerman,et al.  High-resolution bed level changes in relation to tidal and wave forcing on a narrow fringing macrotidal flat: Bridging intra-tidal, daily and seasonal sediment dynamics , 2019, Marine Geology.

[18]  V. Karius,et al.  The development and application of an autonomous working turbidity measurement network: Assessing the spatial and temporal distribution of suspended particulate matter on tidal flats in the North Frisian Wadden Sea , 2019, Continental Shelf Research.

[19]  T. Gerkema,et al.  Beneficial use of dredged sediment to enhance salt marsh development by applying a ‘Mud Motor’ , 2019, Ecological Engineering.

[20]  Ming Li,et al.  Roles of Wind-Driven Currents and Surface Waves in Sediment Resuspension and Transport During a Tropical Storm , 2018, Journal of Geophysical Research: Oceans.

[21]  T. Ysebaert,et al.  The Importance of Combined Tidal and Meteorological Forces for the Flow and Sediment Transport on Intertidal Shoals , 2018, Journal of Geophysical Research: Earth Surface.

[22]  Bregje K. van Wesenbeeck,et al.  Assessing safety of nature-based flood defenses: Dealing with extremes and uncertainties , 2018, Coastal Engineering.

[23]  S. L. Yang,et al.  Erosion and Accretion on a Mudflat: The Importance of Very Shallow‐Water Effects , 2017 .

[24]  R. Fulweiler,et al.  The effect of evaporation on the erodibility of mudflats in a mesotidal estuary , 2017 .

[25]  B. C. Prooijen,et al.  Bed-level changes on intertidal wetland in response to waves and tides: A case study from the Yangtze River Delta , 2017 .

[26]  B. C. Prooijen,et al.  Bed shear stress estimation on an open intertidal flat using in situ measurements , 2016 .

[27]  T. Gerkema,et al.  Quantifying the residual volume transport through a multiple-inlet system in response to wind forcing: the case of the western Dutch Wadden Sea , 2016 .

[28]  J. Peakall,et al.  The role of biophysical cohesion on subaqueous bed form size , 2016, Geophysical research letters.

[29]  L. Qiao,et al.  Storm deposition layer on the Fujian coast generated by Typhoon Saola (2012) , 2015, Scientific Reports.

[30]  T. Gerkema,et al.  Variability of residual fluxes of suspended sediment in a multiple tidal-inlet system: the Dutch Wadden Sea , 2015, Ocean Dynamics.

[31]  Hugh L. MacIntyre,et al.  Grain sizes retained by diatom biofilms during erosion on tidal flats linked to bed sediment texture , 2015 .

[32]  J. Gao,et al.  Determination of Critical Shear Stresses for Erosion and Deposition Based on In Situ Measurements of Currents and Waves over an Intertidal Mudflat , 2015 .

[33]  T. Gerkema,et al.  Observations of a narrow zone of high suspended particulate matter (SPM) concentrations along the Dutch coast , 2015 .

[34]  J. Peakall,et al.  The pervasive role of biological cohesion in bedform development , 2015, Nature Communications.

[35]  Matthias Kudella,et al.  Wave attenuation over coastal salt marshes under storm surge conditions , 2014 .

[36]  Gerben J. de Boer,et al.  Residual circulation and freshwater transport in the Dutch Wadden Sea: a numerical modelling study , 2014 .

[37]  T. Gerkema,et al.  Measurements on the transport of suspended particulate matter in the Vlie Inlet , 2014, Netherlands Journal of Geosciences - Geologie en Mijnbouw.

[38]  L. Merckelbach,et al.  Long-term ferry-based observations of the suspended sediment fluxes through the Marsdiep inlet using acoustic Doppler current profilers , 2014 .

[39]  M. Kirwan,et al.  Tidal wetland stability in the face of human impacts and sea-level rise , 2013, Nature.

[40]  A. J. Van der Spek,et al.  Morphodynamic development and sediment budget of the Dutch Wadden Sea over the last century , 2012, Netherlands Journal of Geosciences - Geologie en Mijnbouw.

[41]  P. Sauriau,et al.  Modelling the effects of macrofauna on sediment transport and bed elevation: application over a cross-shore mudflat profile and model validation , 2012 .

[42]  Gerben J. de Boer,et al.  Mud-induced wave damping and wave-induced liquefaction , 2012 .

[43]  Shi-lun Yang,et al.  Relating accretion and erosion at an exposed tidal wetland to the bottom shear stress of combined current-wave action , 2012 .

[44]  F. Cayocca,et al.  Dynamics of sand and mud mixtures: A multiprocess-based modelling strategy , 2011 .

[45]  Chris J. Kennedy,et al.  The value of estuarine and coastal ecosystem services , 2011 .

[46]  V. Van Lancker,et al.  Sediment mobility in response to tidal and wind-driven flows along the Belgian inner shelf, southern North Sea , 2011 .

[47]  T. Riedel,et al.  Tidal variations in groundwater storage and associated discharge from an intertidal coastal aquifer , 2010 .

[48]  Lawrence P. Sanford,et al.  Modeling a dynamically varying mixed sediment bed with erosion, deposition, bioturbation, consolidation, and armoring , 2008, Comput. Geosci..

[49]  Weiguo Zhang,et al.  Spatial and temporal variations in sediment grain size in tidal wetlands, Yangtze Delta: On the role of physical and biotic controls , 2008 .

[50]  Romaric Verney,et al.  Sedimentation on intertidal mudflats in the lower part of macrotidal estuaries: Sedimentation rhythms and their preservation , 2007 .

[51]  Y. Monbet,et al.  Sediment erodability in sediment transport modelling: Can we account for biota effects? , 2007 .

[52]  J. Downing Twenty-five years with OBS sensors: The good, the bad, and the ugly , 2006 .

[53]  E. Swenson,et al.  Wetland Sedimentation from Hurricanes Katrina and Rita , 2006, Science.

[54]  John Z. Shi,et al.  Cross-shore variations in morphodynamic processes of an open-coast mudflat in the Changjiang Delta, China: With an emphasis on storm impacts , 2006 .

[55]  Allan Aasbjerg Nielsen,et al.  Long-term and high-resolution measurements of bed level changes in a temperate, microtidal coastal lagoon , 2006 .

[56]  J. Syvitski,et al.  Impact of Humans on the Flux of Terrestrial Sediment to the Global Coastal Ocean , 2005, Science.

[57]  P. Hoekstra,et al.  Observations of suspended sediment from ADCP and OBS measurements in a mud-dominated environment , 2005 .

[58]  C. Kranenburg,et al.  Equations for effective stress and permeability of soft mud–sand mixtures , 2004 .

[59]  S. L. Yang,et al.  Morphological response of tidal marshes, flats and channels of the Outer Yangtze River mouth to a major storm , 2003 .

[60]  Shi-lun Yang,et al.  Delta response to decline in sediment supply from the Yangtze River: evidence of the recent four decades and expectations for the next half-century , 2003 .

[61]  Ping Wang,et al.  Temporal distribution of diastems in deposits of an open-coast tidal flat with high suspended sediment concentrations , 2002 .

[62]  D. Fan,et al.  Rhythmic Deposition on Mudflats in the Mesotidal Changjiang Estuary, China , 2002 .

[63]  M. Pejrup,et al.  Suspended sediment transport on a temperate, microtidal mudflat, the Danish Wadden Sea , 2001 .

[64]  H. Ridderinkhof,et al.  Temporal variations in concentration and transport of suspended sediments in a channel–flat system in the Ems-Dollard estuary , 2000 .

[65]  Serge Robert,et al.  Sediment transport over an intertidal mudflat: field investigations and estimation of fluxes within the “Baie de Marenngres-Oleron” (France) , 2000 .

[66]  Cédric Bacher,et al.  Characterization of intertidal flat hydrodynamics , 2000 .

[67]  B. Janssen-Stelder The effect of different hydrodynamic conditions on the morphodynamics of a tidal mudflat in the Dutch Wadden Sea , 2000 .

[68]  A. Swales,et al.  Silt and sand transport in a deep tidal channel of a large estuary (Manukau Harbour, New Zealand) , 2000 .

[69]  John Robert Lawrence Allen,et al.  Medium-term sedimentation on high intertidal mudflats and salt marshes in the Severn Estuary, SW Britain: the role of wind and tide , 1998 .

[70]  Erik Toorman,et al.  Settling and consolidation of mud/sand mixtures , 1996 .

[71]  Helen Mitchener,et al.  Erosion of mud/sand mixtures , 1996 .

[72]  D. Reed The response of coastal marshes to sea‐level rise: Survival or submergence? , 1995 .

[73]  Denise J. Reed,et al.  The impact of sea-level rise on coastal salt marshes , 1990 .

[74]  Ken Been,et al.  Self-weight consolidation of soft soils: an experimental and theoretical study , 1981 .

[75]  Van Rijn,et al.  Erodibility of Mud–Sand Bed Mixtures , 2020 .

[76]  L. V. van Rijn,et al.  Settling and Consolidation of Soft Mud–Sand Layers , 2019, Journal of Waterway, Port, Coastal, and Ocean Engineering.

[77]  Shi-lun Yang,et al.  Role of wind in erosion-accretion cycles on an estuarine mudflat , 2017 .

[78]  T. Gerkema,et al.  Residual water transport in the Marsdiep tidal inlet inferred from observations and a numerical model , 2016 .

[79]  Shi-lun Yang,et al.  Intra-tidal sedimentary processes associated with combined wave-current action on an exposed, erosional mudflat, southeastern Yangtze River Delta, China , 2014 .

[80]  Benwei Shi,et al.  Wave Attenuation at a Salt Marsh Margin: A Case Study of an Exposed Coast on the Yangtze Estuary , 2011, Estuaries and Coasts.

[81]  B. C. Prooijen,et al.  A stochastic formulation for erosion of cohesive sediments , 2010 .

[82]  Johan C. Winterwerp,et al.  A conceptual framework for the erosion behaviour of sand-mud mixtures , 2004 .

[83]  Vladimir Nikora,et al.  Despiking Acoustic Doppler Velocimeter Data , 2002 .

[84]  D. Paterson,et al.  Microphytobenthos in contrasting coastal ecosystems: biology and dynamics , 2001 .

[85]  E. Deckere,et al.  Temporal variation in sediment erodibility and suspended sediment dynamics in the Dollard estuary , 1998, Geological Society, London, Special Publications.

[86]  C. Kranenburg The Fractal Structure of Cohesive Sediment Aggregates , 1994 .