A hierarchical regulatory network analysis of the vitamin D induced transcriptome reveals novel regulators and complete VDR dependency in monocytes

[1]  Marcel H. Schulz,et al.  EpiRegio: analysis and retrieval of regulatory elements linked to genes , 2020, Nucleic Acids Res..

[2]  C. Carlberg,et al.  Genome-wide effects of chromatin on vitamin D signaling. , 2020, Journal of molecular endocrinology.

[3]  A. Korobeynikov,et al.  Sequence Analysis , 2020, Encyclopedia of Bioinformatics and Computational Biology.

[4]  Phillip A. Richmond,et al.  JASPAR 2020: update of the open-access database of transcription factor binding profiles , 2019, Nucleic Acids Res..

[5]  C. Carlberg Vitamin D Signaling in the Context of Innate Immunity: Focus on Human Monocytes , 2019, Front. Immunol..

[6]  Zhiping Weng,et al.  A curated benchmark of enhancer-gene interactions for evaluating enhancer-target gene prediction methods , 2019, Genome Biology.

[7]  Marcel H. Schulz,et al.  Integrative prediction of gene expression with chromatin accessibility and conformation data , 2019, Epigenetics & Chromatin.

[8]  C. Carlberg,et al.  Primary Vitamin D Target Genes of Human Monocytes , 2019, Front. Physiol..

[9]  Nina Baumgarten,et al.  TEPIC 2—an extended framework for transcription factor binding prediction and integrative epigenomic analysis , 2018, Bioinform..

[10]  C. Carlberg,et al.  The impact of the vitamin D-modulated epigenome on VDR target gene regulation. , 2018, Biochimica et biophysica acta. Gene regulatory mechanisms.

[11]  F. A. Kolpakov,et al.  HOCOMOCO: towards a complete collection of transcription factor binding models for human and mouse via large-scale ChIP-Seq analysis , 2017, Nucleic Acids Res..

[12]  J. McGrath,et al.  Vitamin D and the brain: Genomic and non-genomic actions , 2017, Molecular and Cellular Endocrinology.

[13]  C. Carlberg,et al.  Selective regulation of biological processes by vitamin D based on the spatio-temporal cistrome of its receptor. , 2017, Biochimica et biophysica acta. Gene regulatory mechanisms.

[14]  C. Carlberg,et al.  Epigenomic PU.1-VDR crosstalk modulates vitamin D signaling. , 2017, Biochimica et biophysica acta. Gene regulatory mechanisms.

[15]  C. Carlberg,et al.  The vitamin D-dependent transcriptome of human monocytes , 2016, The Journal of Steroid Biochemistry and Molecular Biology.

[16]  C. Carlberg,et al.  Vitamin D-dependent chromatin association of CTCF in human monocytes. , 2016, Biochimica et biophysica acta.

[17]  A. Ferrante,et al.  The Non-Genomic Actions of Vitamin D , 2016, Nutrients.

[18]  Guangchuang Yu,et al.  ReactomePA: an R/Bioconductor package for reactome pathway analysis and visualization. , 2016, Molecular bioSystems.

[19]  C. Carlberg,et al.  Epigenome-wide effects of vitamin D and their impact on the transcriptome of human monocytes involve CTCF , 2015, Nucleic acids research.

[20]  David J. Arenillas,et al.  JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles , 2015, Nucleic Acids Res..

[21]  S. Heikkinen,et al.  The transcriptional regulator BCL6 participates in the secondary gene regulatory response to vitamin D. , 2015, Biochimica et biophysica acta.

[22]  Thomas J. Ha,et al.  Transcribed enhancers lead waves of coordinated transcription in transitioning mammalian cells , 2015, Science.

[23]  Michael Q. Zhang,et al.  Integrative analysis of 111 reference human epigenomes , 2015, Nature.

[24]  B. Boyan,et al.  Membrane actions of 1α,25(OH)2D3 are mediated by Ca2+/calmodulin-dependent protein kinase II in bone and cartilage cells , 2015, The Journal of Steroid Biochemistry and Molecular Biology.

[25]  B. Boyan,et al.  Signaling components of the 1α,25(OH)2D3-dependent Pdia3 receptor complex are required for Wnt5a calcium-dependent signaling. , 2014, Biochimica et biophysica acta.

[26]  C. Carlberg,et al.  Characterization of Genomic Vitamin D Receptor Binding Sites through Chromatin Looping and Opening , 2014, PloS one.

[27]  J. Adams,et al.  Impact of vitamin D on immune function: lessons learned from genome-wide analysis , 2014, Front. Physiol..

[28]  B. Boyan,et al.  New insights on membrane mediated effects of 1α,25-dihydroxy vitamin D3 signaling in the musculoskeletal system , 2014, Steroids.

[29]  Manolis Kellis,et al.  Systematic discovery and characterization of regulatory motifs in ENCODE TF binding experiments , 2013, Nucleic acids research.

[30]  B. Boyan,et al.  Plasma membrane Pdia3 and VDR interact to elicit rapid responses to 1α,25(OH)(2)D(3). , 2013, Cellular signalling.

[31]  S. Heikkinen,et al.  Dynamics of 1α,25-dihydroxyvitamin D3-dependent chromatin accessibility of early vitamin D receptor target genes. , 2013, Biochimica et biophysica acta.

[32]  C. Carlberg,et al.  Primary 1,25-Dihydroxyvitamin D3 Response of the Interleukin 8 Gene Cluster in Human Monocyte- and Macrophage-Like Cells , 2013, PloS one.

[33]  A. Coulon,et al.  Eukaryotic transcriptional dynamics: from single molecules to cell populations , 2013, Nature Reviews Genetics.

[34]  R. Boland,et al.  Role of VDR in 1α,25-dihydroxyvitamin D3-dependent non-genomic activation of MAPKs, Src and Akt in skeletal muscle cells , 2013, The Journal of Steroid Biochemistry and Molecular Biology.

[35]  Wing-Kin Sung,et al.  ChIA-PET analysis of transcriptional chromatin interactions. , 2012, Methods.

[36]  S. Heikkinen,et al.  Chromatin acetylation at transcription start sites and vitamin D receptor binding regions relates to effects of 1α,25-dihydroxyvitamin D3 and histone deacetylase inhibitors on gene expression , 2012, Nucleic acids research.

[37]  A. Zamoner,et al.  1α,25-dihydroxyvitamin D(3) mechanism of action: modulation of L-type calcium channels leading to calcium uptake and intermediate filament phosphorylation in cerebral cortex of young rats. , 2012, Biochimica et biophysica acta.

[38]  Thomas Lengauer,et al.  BLUEPRINT to decode the epigenetic signature written in blood , 2012, Nature Biotechnology.

[39]  R. Boland VDR activation of intracellular signaling pathways in skeletal muscle , 2011, Molecular and Cellular Endocrinology.

[40]  Giovanni Parmigiani,et al.  Integrating diverse genomic data using gene sets , 2011, Genome Biology.

[41]  V. Beneš,et al.  Nuclear hormone 1α,25-dihydroxyvitamin D3 elicits a genome-wide shift in the locations of VDR chromatin occupancy , 2011, Nucleic acids research.

[42]  M. Haussler,et al.  Vitamin D receptor (VDR)-mediated actions of 1α,25(OH)₂vitamin D₃: genomic and non-genomic mechanisms. , 2011, Best practice & research. Clinical endocrinology & metabolism.

[43]  R. Mason,et al.  1α,25(OH)2-Vitamin D and a Nongenomic Vitamin D Analogue Inhibit Ultraviolet Radiation–Induced Skin Carcinogenesis , 2011, Cancer Prevention Research.

[44]  C. Carlberg,et al.  Mechanism of 1α,25-dihydroxyvitamin D(3)-dependent repression of interleukin-12B. , 2011, Biochimica et biophysica acta.

[45]  N. Friedman,et al.  Densely Interconnected Transcriptional Circuits Control Cell States in Human Hematopoiesis , 2011, Cell.

[46]  B. Boyan,et al.  Protein-disulfide Isomerase-associated 3 (Pdia3) Mediates the Membrane Response to 1,25-Dihydroxyvitamin D3 in Osteoblasts* , 2010, The Journal of Biological Chemistry.

[47]  C. Carlberg The impact of transcriptional cycling on gene regulation , 2010, Transcription.

[48]  A. Norman,et al.  A molecular description of ligand binding to the two overlapping binding pockets of the nuclear vitamin D receptor (VDR): Structure-function implications , 2010, The Journal of Steroid Biochemistry and Molecular Biology.

[49]  R. Boland,et al.  Caveolae and caveolin-1 are implicated in 1α,25(OH)2-vitamin D3-dependent modulation of Src, MAPK cascades and VDR localization in skeletal muscle cells , 2010, The Journal of Steroid Biochemistry and Molecular Biology.

[50]  Zhentao Zhang,et al.  1,25 dihydroxyvitamin D-mediated orchestration of anticancer, transcript-level effects in the immortalized, non-transformed prostate epithelial cell line, RWPE1 , 2010, BMC Genomics.

[51]  A. Muñoz,et al.  Nuclear receptors: Genomic and non-genomic effects converge , 2009, Cell cycle.

[52]  F. Bruggeman,et al.  Elongation dynamics shape bursty transcription and translation , 2009, Proceedings of the National Academy of Sciences.

[53]  Carola Engler,et al.  A One Pot, One Step, Precision Cloning Method with High Throughput Capability , 2008, PloS one.

[54]  M. Haussler,et al.  Vitamin D receptor: molecular signaling and actions of nutritional ligands in disease prevention. , 2008, Nutrition reviews.

[55]  Clifford A. Meyer,et al.  Model-based Analysis of ChIP-Seq (MACS) , 2008, Genome Biology.

[56]  L. Adorini,et al.  Control of autoimmune diseases by the vitamin D endocrine system , 2008, Nature Clinical Practice Rheumatology.

[57]  N. Reiner,et al.  1α,25‐Dihydroxycholecalciferol activates binding of CREB to a CRE site in the CD14 promoter and drives promoter activity in a phosphatidylinositol‐3 kinase‐dependent manner , 2007, Journal of leukocyte biology.

[58]  Sungtae Kim,et al.  Perspectives on mechanisms of gene regulation by 1,25-dihydroxyvitamin D3 and its receptor , 2007, The Journal of Steroid Biochemistry and Molecular Biology.

[59]  Dino Moras,et al.  Identification of an alternative ligand-binding pocket in the nuclear vitamin D receptor and its functional importance in 1alpha,25(OH)2-vitamin D3 signaling. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[60]  A. Norman,et al.  Electrical responses to 1α,25(OH)2-Vitamin D3 and their physiological significance in osteoblasts , 2004, Steroids.

[61]  A. Norman,et al.  Rapid modulation of osteoblast ion channel responses by 1alpha,25(OH)2-vitamin D3 requires the presence of a functional vitamin D nuclear receptor. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[62]  C. Der,et al.  Role of MAP Kinases in the 1,25-Dihydroxyvitamin D3-induced Transactivation of the Rat Cytochrome P450C24 (CYP24) Promoter , 2002, The Journal of Biological Chemistry.

[63]  B. Boyan,et al.  Differential regulation of growth plate chondrocytes by 1alpha,25-(OH)2D3 and 24R,25-(OH)2D3 involves cell-maturation-specific membrane-receptor-activated phospholipid metabolism. , 2002, Critical reviews in oral biology and medicine : an official publication of the American Association of Oral Biologists.

[64]  N. Reiner,et al.  1α,25-Dihydroxyvitamin D3-induced Monocyte Antimycobacterial Activity Is Regulated by Phosphatidylinositol 3-Kinase and Mediated by the NADPH-dependent Phagocyte Oxidase* , 2001, The Journal of Biological Chemistry.

[65]  B. Boyan,et al.  Identification of a Membrane Receptor for 1,25‐Dihydroxyvitamin D3 Which Mediates Rapid Activation of Protein Kinase C , 1998, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[66]  M. Holick,et al.  Binding characteristics of a membrane receptor that recognizes 1α25‐dihydroxyvitamin D3 and its epimer, 1β,25‐dihydroxyvitamin D3 , 1994 .

[67]  A. Norman,et al.  Identification of a specific binding protein for 1 alpha,25-dihydroxyvitamin D3 in basal-lateral membranes of chick intestinal epithelium and relationship to transcaltachia. , 1994, The Journal of biological chemistry.

[68]  A. Norman,et al.  1β, 25(OH)2-vitamin D3 is an antagonist of 1α,25(OH)2-vitamin D3 stimulated transcaltachia (The rapid hormonal stimulation of intestinal calcium transport) , 1992 .

[69]  G. Stein,et al.  1α,25‐Dihydroxyvitamin D3 rapidly increases cytosolic calcium in clonal rat osteosarcoma cells lacking the vitamin D Receptor , 1991 .

[70]  Shigeru Tsuchiya,et al.  Establishment and characterization of a human acute monocytic leukemia cell line (THP‐1) , 1980, International journal of cancer.

[71]  C. Carlberg,et al.  Modulation of vitamin D signaling by the pioneer factor CEBPA. , 2019, Biochimica et biophysica acta. Gene regulatory mechanisms.

[72]  J. Peppel,et al.  Vitamin D and gene networks in human osteoblasts , 2014, Front. Physiol..

[73]  D. Tranchina,et al.  Mechanistic model of bursts in mRNA synthesis , 2006 .

[74]  M. Haussler,et al.  The vitamin D hormone and its nuclear receptor: molecular actions and disease states. , 1997, The Journal of endocrinology.

[75]  M. Holick,et al.  Binding characteristics of a membrane receptor that recognizes 1 alpha,25-dihydroxyvitamin D3 and its epimer, 1 beta,25-dihydroxyvitamin D3. , 1994, Journal of cellular biochemistry.

[76]  A. Norman,et al.  1 beta, 25 (OH)2-vitamin D3 is an antagonist of 1 alpha,25 (OH)2-vitamin D3 stimulated transcaltachia (the rapid hormonal stimulation of intestinal calcium transport). , 1992, Biochemical and biophysical research communications.