Complex and Inverse Complex Dynamics of Fractals using Ishikawa Iteration
暂无分享,去创建一个
[1] P. J. Rippon,et al. On the structure of the Mandelbar set , 1989 .
[2] Ken Shirriff,et al. An investigation of fractals generated by z --> 1/zn + c , 1993, Comput. Graph..
[3] J. Milnor. Dynamics in one complex variable , 2000 .
[4] G. Julia. Mémoire sur l'itération des fonctions rationnelles , 1918 .
[5] Benoit B. Mandelbrot,et al. Fractal Geometry of Nature , 1984 .
[6] Ashish Negi,et al. Inverse Complex Function Dynamics of Ishikawa Iterates , 2010 .
[7] Ashish Negi,et al. Mandel-Bar Sets of Inverse Complex Function , 2010 .
[8] Ashish Negi,et al. Complex Dynamics of Ishikawa Iterates for Non Integer Values , 2010 .
[9] Uday G. Gujar,et al. Fractal images from z <-- z alpha + c in the complex z-plane , 1992, Comput. Graph..
[10] Uday G. Gujar,et al. Analysis of z-plane fractal images from z <-- z alpha + c for alpha < 0 , 1993, Comput. Graph..
[11] Dierk Schleicher,et al. Symmetries of fractals revisited , 1996 .
[12] Dierk Schleicher,et al. On Multicorns and unicorns I: Antiholomorphic Dynamics, Hyperbolic Components and Real cubic Polynomials , 2003, Int. J. Bifurc. Chaos.
[13] Xingyuan Wang,et al. ANALYSIS OF C-PLANE FRACTAL IMAGES FROM z ← zα + c FOR (α < 0) , 2000 .
[14] S. Ishikawa. Fixed points by a new iteration method , 1974 .
[15] Robert L. Devaney,et al. A First Course In Chaotic Dynamical Systems: Theory And Experiment , 1993 .
[16] Luis Garrido. Dynamical System and Chaos , 1983 .
[17] J. Milnor,et al. Dynamics in One Complex Variable: Introductory Lectures , 2000 .
[18] Uday G. Gujar,et al. Fractals from z <-- z alpha + c in the complex c-plane , 1991, Comput. Graph..