On discrete‐time LPV control using delayed Lyapunov functions

This paper presents new stabilization conditions for discrete‐time linear parameter‐varying systems in the form of linear matrix inequalities. The use of Lyapunov functions with dependence on delayed scheduling parameters is introduced. In addition, a lifted condition based on a Lyapunov function with dependence on delayed scheduling parameters, constructed in terms of an augmented state vector that takes into account a generic number of higher‐order shifted states, is presented. Numerical examples are provided to illustrate the advantages of the proposed approach when compared to other techniques from the literature.

[1]  M. L. C. Peixoto,et al.  Stability and stabilization for LPV systems based on Lyapunov functions with non-monotonic terms , 2020, J. Frankl. Inst..

[2]  Anh-Tu Nguyen,et al.  A Multiple-Parameterization Approach for local stabilization of constrained Takagi-Sugeno fuzzy systems with nonlinear consequents , 2020, Inf. Sci..

[3]  Antonio Sala,et al.  Stability analysis of LPV systems: Scenario approach , 2019, Automatica.

[4]  Valter J. S. Leite,et al.  Robust performance for uncertain systems via Lyapunov functions with higher order terms , 2019, J. Frankl. Inst..

[5]  Arash Sadeghzadeh,et al.  LMI relaxations for robust gain‐scheduled control of uncertain linear parameter varying systems , 2019, IET Control Theory & Applications.

[6]  Michio Sugeno,et al.  Fuzzy Control Systems: Past, Present and Future , 2019, IEEE Computational Intelligence Magazine.

[7]  Miguel Bernal,et al.  Efficient LMI Conditions for Enhanced Stabilization of Discrete-Time Takagi–Sugeno Models via Delayed Nonquadratic Lyapunov Functions , 2019, IEEE Transactions on Fuzzy Systems.

[8]  Dalil Ichalal,et al.  State and Unknown Input H∞ Observers for Discrete‐Time LPV Systems , 2018, Asian Journal of Control.

[9]  Ricardo C. L. F. Oliveira,et al.  New robust LMI synthesis conditions for mixed H2/H∞  gain‐scheduled reduced‐order DOF control of discrete‐time LPV systems , 2018, International Journal of Robust and Nonlinear Control.

[10]  Indra Narayan Kar,et al.  Composite Adaptive Control of Uncertain Euler‐Lagrange Systems with Parameter Convergence without PE Condition , 2018, Asian Journal of Control.

[11]  Siep Weiland,et al.  Affine Parameter-Dependent Lyapunov Functions for LPV Systems With Affine Dependence , 2018, IEEE Transactions on Automatic Control.

[12]  Philippe Chevrel,et al.  Gain-scheduled static output feedback control for saturated LPV systems with bounded parameter variations , 2018, Autom..

[13]  Peter Seiler,et al.  Stability of uncertain systems using Lyapunov functions with non-monotonic terms , 2017, Autom..

[14]  Maurício C. de Oliveira,et al.  A new discrete-time stabilizability condition for Linear Parameter-Varying systems , 2017, Autom..

[15]  Thierry-Marie Guerra,et al.  Controller Design for TS Models Using Delayed Nonquadratic Lyapunov Functions , 2015, IEEE Transactions on Cybernetics.

[16]  Ricardo C. L. F. Oliveira,et al.  Robust state feedback control for discrete-time linear systems via LMIs with a scalar parameter , 2013, 2013 American Control Conference.

[17]  Xian Zhang,et al.  Robust Stability and Stabilization Criteria for Discrete Singular Time‐Delay LPV Systems , 2012 .

[18]  Xiaodong Liu,et al.  Parameter-varying state feedback control for discrete-time polytopic systems , 2011, Int. J. Syst. Sci..

[19]  Reinaldo M. Palhares,et al.  Stability analysis of linear time-varying systems: Improving conditions by adding more information about parameter variation , 2011, Syst. Control. Lett..

[20]  Jan Swevers,et al.  Gain-scheduled H 2 and H ∞ control of discrete-time polytopic time-varying systems , 2010 .

[21]  Thierry-Marie Guerra,et al.  Discrete Tagaki-Sugeno models for control: Where are we? , 2009, Annu. Rev. Control..

[22]  Ricardo C. L. F. Oliveira,et al.  Convergent LMI relaxations for robust analysis of uncertain linear systems using lifted polynomial parameter-dependent Lyapunov functions , 2008, Syst. Control. Lett..

[23]  P. Shi,et al.  Gain-scheduled stabilisation of linear parameter-varying systems with time-varying input delay , 2007 .

[24]  Ricardo C. L. F. Oliveira,et al.  Parameter-Dependent LMIs in Robust Analysis: Characterization of Homogeneous Polynomially Parameter-Dependent Solutions Via LMI Relaxations , 2007, IEEE Transactions on Automatic Control.

[25]  Graziano Chesi,et al.  Robust stability of time-varying polytopic systems via parameter-dependent homogeneous Lyapunov functions , 2007, Autom..

[26]  Ji-Woong Lee,et al.  On Uniform Stabilization of Discrete-Time Linear Parameter-Varying Control Systems , 2006, IEEE Transactions on Automatic Control.

[27]  Valter J. S. Leite,et al.  Gain scheduled state feedback control of discrete-time systems with time-varying uncertainties: an LMI approach , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[28]  D. Peaucelle,et al.  Robust Performance Analysis of Linear Time-Invariant Uncertain Systems by Taking Higher-Order Time-Derivatives of the State , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[29]  Jamal Daafouz,et al.  Parameter dependent Lyapunov functions for discrete time systems with time varying parametric uncertainties , 2001, Syst. Control. Lett..

[30]  Wilson J. Rugh,et al.  Research on gain scheduling , 2000, Autom..

[31]  J. Geromel,et al.  A new discrete-time robust stability condition , 1999 .

[32]  E. Feron,et al.  Analysis and synthesis of robust control systems via parameter-dependent Lyapunov functions , 1996, IEEE Trans. Autom. Control..

[33]  Weiming Xiang,et al.  Parameter-memorized Lyapunov functions for discrete-time systems with time-varying parametric uncertainties , 2018, Autom..

[34]  D. Singh,et al.  AN OVERVIEW OF THE APPLICATIONS OF MULTISETS , 2007 .

[35]  Dimitri Peaucelle,et al.  General polynomial parameter-dependent Lyapunov functions for polytopic uncertain systems , 2006 .

[36]  Brian D. O. Anderson,et al.  Proceedings of the 17th International Symposium on Mathematical Theory of Networks and Systems (MTNS) , 2006 .

[37]  J. Lofberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).

[38]  Franco Blanchini,et al.  Stabilization of LPV Systems: State Feedback, State Estimation, and Duality , 2003, SIAM J. Control. Optim..

[39]  Knud D. Andersen,et al.  The Mosek Interior Point Optimizer for Linear Programming: An Implementation of the Homogeneous Algorithm , 2000 .