A novel approach to estimate canopy height using ICESat/GLAS data: A case study in the New Forest National Park, UK

The Geoscience Laser Altimeter System (GLAS) aboard Ice, Cloud and land Elevation Satellite (ICESat) is a spaceborne LiDAR sensor. It is the first LiDAR instrument which can digitize the backscattered waveform and offer near global coverage. Among others, scientific objectives of the mission include precise measurement of vegetation canopy heights. Existing approaches of waveform processing for canopy height estimation suggest Gaussian decomposition of the waveform which has the limitation to properly characterize significant peaks and results in discrepant information. Moreover, in most cases, Digital Terrain Models (DTMs) are required for canopy height estimation. This paper presents a new automated method of GLAS waveform processing for extracting vegetation canopy height in the absence of a DTM. Canopy heights retrieved from GLAS waveforms were validated with field measured heights. The newly proposed method was able to explain 79% of variation in canopy heights with an RMSE of 3.18 m, in the study area. The unexplained variation in canopy heights retrieved from GLAS data can be due to errors introduced by footprint eccentricity, decay of energy between emitted and received signals, uncertainty in the field measurements and limited number of sampled footprints. Results achieved with the newly proposed method were encouraging and demonstrated its potential of processing full-waveform LiDAR data for estimating forest canopy height. The study also had implications on future full-waveform spaceborne missions and their utility in vegetation studies.

[1]  Norbert Pfeifer,et al.  FULL WAVEFORM ANALYSIS: ICESAT LASER DATA FOR LAND COVER CLASSIFICATIO N , 2006 .

[2]  R. Houghton,et al.  Aboveground Forest Biomass and the Global Carbon Balance , 2005 .

[3]  J. Abshire,et al.  Geoscience Laser Altimeter System (GLAS) on the ICESat Mission: On‐orbit measurement performance , 2005 .

[4]  W. Cohen,et al.  Estimates of forest canopy height and aboveground biomass using ICESat , 2005 .

[5]  Guoqing Sun,et al.  Modeling lidar returns from forest canopies , 2000, IEEE Trans. Geosci. Remote. Sens..

[6]  V. K. Zadiraka,et al.  Analysis of the accuracy and efficiency of the fast-Fourier-transform algorithm and some of its applications , 1973 .

[7]  Guoqing Sun,et al.  Landcover attributes from ICESat GLAS data in Central Siberia , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[8]  H. Zwally ICESat's Laser Measurements of Polar Ice and Atmospheres , 2003 .

[9]  Qi Chen Assessment of terrain elevation derived from satellite laser altimetry over mountainous forest areas using airborne lidar data , 2010 .

[10]  S. Roxburgh,et al.  Forecasting landscape-level carbon sequestration using gridded, spatially adjusted tree growth , 2004 .

[11]  Ross Nelson,et al.  Model effects on GLAS-based regional estimates of forest biomass and carbon , 2010 .

[12]  D. Roberts,et al.  Small-footprint lidar estimation of sub-canopy elevation and tree height in a tropical rain forest landscape , 2004 .

[13]  K. Ranson,et al.  Predicting lidar measured forest vertical structure from multi-angle spectral data , 2006 .

[14]  Craig B. Markwardt,et al.  Non-linear Least Squares Fitting in IDL with MPFIT , 2009, 0902.2850.

[15]  M. Keller,et al.  Biomass estimation in the Tapajos National Forest, Brazil: Examination of sampling and allometric uncertainties , 2001 .

[16]  G. Vosselman,et al.  Single and two epoch analysis of ICESat full waveform data over forested areas , 2008 .

[17]  J. Heiskanen,et al.  Biomass estimation over a large area based on standwise forest inventory data and ASTER and MODIS satellite data: A possibility to verify carbon inventories , 2007 .

[18]  S. Ustin,et al.  Modeling airborne laser scanning data for the spatial generation of critical forest parameters in fire behavior modeling , 2003 .

[19]  R. Nelson,et al.  Regional aboveground forest biomass using airborne and spaceborne LiDAR in Québec. , 2008 .

[20]  K. Ranson,et al.  Forest vertical structure from GLAS : An evaluation using LVIS and SRTM data , 2008 .

[21]  Michael A. Wulder,et al.  Estimating forest canopy height and terrain relief from GLAS waveform metrics , 2010 .

[22]  R. Dubayah,et al.  Estimation of tropical forest structural characteristics using large-footprint lidar , 2002 .

[23]  W. Wagner,et al.  Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laser scanner , 2006 .

[24]  H. Zwally,et al.  Overview of the ICESat Mission , 2005 .

[25]  M. Lefsky,et al.  Forest Canopy Heights in Amazon River Basin Forests as Estimated with the Geoscience Laser Altimeter System (GLAS) , 2006 .

[26]  M. Hofton,et al.  LAND SURFACE CHARACTERIZATION USING LIDAR REMOTE SENSING , 2001 .

[27]  Unfccc Kyoto Protocol to the United Nations Framework Convention on Climate Change , 1997 .

[28]  Frédéric Bretar,et al.  Full-waveform topographic lidar : State-of-the-art , 2009 .

[29]  M. Lefsky,et al.  Mapping tropical forest biomass with radar and spaceborne LiDAR in Lopé National Park, Gabon: Overcoming problems of high biomass and persistent cloud , 2012 .

[30]  Peter M. Atkinson,et al.  Three-dimensional mapping of light transmittance and foliage distribution using lidar , 2003 .

[31]  Peter R. J. North,et al.  Vegetation height estimates for a mixed temperate forest using satellite laser altimetry , 2008 .

[32]  R. Colwell Remote sensing of the environment , 1980, Nature.

[33]  Michael A. Lefsky,et al.  Revised method for forest canopy height estimation from Geoscience Laser Altimeter System waveforms , 2007 .

[34]  Norbert Pfeifer,et al.  ANALYSIS OF REPEATED ICESAT FULL WAVEFORM DATA: METHODOLOGY AND LEAF-ON / LEAF-OFF COMPARISON , 2006 .

[35]  H. Takeda GROUND SURFACE ESTIMATION IN DENSE FOREST , 2004 .

[36]  S. Reutebuch,et al.  Estimating forest canopy fuel parameters using LIDAR data , 2005 .

[37]  C. Chatfield,et al.  Fourier Analysis of Time Series: An Introduction , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[38]  N. Coops,et al.  Conceptual Development of a Eucalypt Canopy Condition Index Using High Resolution Spatial and Spectral Remote Sensing Imagery , 2000 .

[39]  F. Wagner,et al.  Good Practice Guidance for Land Use, Land-Use Change and Forestry , 2003 .

[40]  W. Cohen,et al.  Lidar Remote Sensing for Ecosystem Studies , 2002 .

[41]  Yong Pang,et al.  TEMPERATE FOREST HEIGHT ESTIMATION PERFORMANCE USING ICESAT GLAS DATA FROM DIFFERENT OBSERVATION PERIODS , 2008 .

[42]  Yoram J. Kaufman,et al.  Remote sensing of biomass burning in the tropics , 1990 .

[43]  K. Jon Ranson,et al.  Imaging radar for ecosystem studies , 1995 .

[44]  Junjie Zhang,et al.  An improved method for estimating forest canopy height using ICESat-GLAS full waveform data over sloping terrain: A case study in Changbai mountains, China , 2010, Int. J. Appl. Earth Obs. Geoinformation.

[45]  Thuy Le Toan,et al.  Dependence of radar backscatter on coniferous forest biomass , 1992, IEEE Trans. Geosci. Remote. Sens..

[46]  H. Zwally,et al.  Derivation of Range and Range Distributions From Laser Pulse Waveform Analysis for Surface Elevations, Roughness, Slope, and Vegetation Heights , 2012 .

[47]  Wenge Ni-Meister,et al.  Modeling lidar waveforms in heterogeneous and discrete canopies , 2001, IEEE Trans. Geosci. Remote. Sens..

[48]  Yoram J. Kaufman,et al.  Remote Sensing of Biomass Burning in the Tropics , 1990 .

[49]  Norbert Pfeifer,et al.  ICESat Full-Waveform Altimetry Compared to Airborne Laser Scanning Altimetry Over The Netherlands , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[50]  Peter R. J. North,et al.  A Monte Carlo radiative transfer model of satellite waveform LiDAR , 2010 .

[51]  D. Harding,et al.  ICESat waveform measurements of within‐footprint topographic relief and vegetation vertical structure , 2005 .

[52]  David J. Harding,et al.  Light transmittance in forest canopies determined using airborne laser altimetry and in-canopy quantum measurements , 2001 .

[53]  Qi Chen Retrieving vegetation height of forests and woodlands over mountainous areas in the Pacific Coast region using satellite laser altimetry , 2010 .