Anisotropic magnetic susceptibility record of the kinematics of the Boltaña Anticline (Southern Pyrenees)

Anisotropic magnetic susceptibility (AMS) analysis of 1454 samples evenly distributed along an 1800 m section in the South Pyrenean Zone is presented. The sampled rocks are pre- and syn-tectonic limestones, marls and sandstones of Ypresian-Lutetian age. They are weakly deformed rocks sampled from both limbs of the N-S trending Boltana Anticline (oblique to the WNW-ESE main Pyrenean trend). Rock magnetism analyses, including low temperature and high field magnetic susceptibility measurements confirm a dominant paramagnetic signal and hence allow the interpretation of AMS in terms of preferred rock fabric or finite strain orientation. Therefore, this study was focused on obtaining an independent kinematic information from a vast set of AMS data from particular structural positions. The three directional maxima for the maximum axis of the magnetic ellipsoid (KMAX, magnetic lineation) can be tentatively related to major tectonic events in the Central Pyrenees. A first stage (recording a N-S magnetic lineation) is related to an oblique ramp of the Cotiella Thrust, emplaced during Ypresian times. A pseudo-progressive variation turns into a second stage (linked to a NW-SE KMAX orientation maximum) that can be related to Pyrenean compression. Both stages witness a far-field imprint of active structures on the foreland sediments. Once the Boltana Anticline was nucleated (during the Lutetian), a predominant, more constant NW-SE trend is observed, this near-field magnetic fabric being the only lineation imprinted in the rocks. A final stage arrived in the course of vertical axis rotation during the Late Lutetian-Bartonian. This latest event was responsible for the present configuration of the Boltana Anticline (N-S). Copyright # 2010 John Wiley & Sons, Ltd.

[1]  F. Hrouda,et al.  Resolution of ferrimagnetic and paramagnetic anisotropies in rocks, using combined low-field and high-field measurements , 1990 .

[2]  A. Schleicher,et al.  Disentangling magnetic subfabrics and their link to deformation processes in cleaved sedimentary rocks from the Internal Sierras (west central Pyrenees, Spain) , 2009 .

[3]  B. Henry,et al.  Tectonic applications of magnetic susceptibility and its anisotropy , 1997 .

[4]  C. Puigdefàbregas,et al.  La sedimentación molásica en la cuenca de Jaca , 1975 .

[5]  R. Soto,et al.  Mesozoic extension in the Basque–Cantabrian basin (N Spain): Contributions from AMS and brittle mesostructures , 2007 .

[6]  J. Muñoz,et al.  Thrust sequence in the southern central Pyrenees , 1990 .

[7]  J. Muñoz Evolution of a continental collision belt: ECORS-Pyrenees crustal balanced cross-section , 1992 .

[8]  J. Muñoz,et al.  Thrust sequences in the eastern Spanish Pyrenees , 1986 .

[9]  F. Hrouda Magnetic anisotropy of rocks and its application in geology and geophysics , 1982 .

[10]  M. Mattei,et al.  Magnetic fabric of clay sediments from the external northern Apennines (Italy) , 1998 .

[11]  A. Juan Estudio geológico de las Sierras Marginales Catalanas (Prepirineo de Lérida) , 1978 .

[12]  J. Parés,et al.  An integrated AMS, structural, palaeo- and rock-magnetic study of Eocene marine marls from the Jaca-Pamplona basin (Pyrenees, N Spain); new insights into the timing of magnetic fabric acquisition in weakly deformed mudrocks , 2004, Geological Society, London, Special Publications.

[13]  P. Câmara,et al.  Interpretación geodinámica de la vertiente centro-occidental surpirenaica (cuencas de Jaca-Tremp) , 1985 .

[14]  C. Kissel,et al.  Magnetic fabric as a structural indicator of the deformation path within a fold-thrust structure: a test case from the Corbières (NE Pyrenees, France) , 1992 .

[15]  J. Muñoz,et al.  Quantifying the kinematics of detachment folds using three-dimensional geometry: Application to the Mediano anticline (Pyrenees, Spain) , 1998 .

[16]  M. Mattei,et al.  Relationship between AMS and folding in an area of superimposed folding (Cotiella-Bóixols nappe, Southern Pyrenees) , 2003 .

[17]  A. Juan Deformaciones de la coberta desplegada influidas por accidentes de zócalo en las Sierra Marginales Catalanas (Prepirineo Meridional) , 1979 .

[18]  S. Hillier,et al.  Phyllosilicate orientation demonstrates early timing of compactional stabilization in calcite-cemented concretions in the Barnett Shale (Late Mississippian), Fort Worth Basin, Texas (U.S.A) , 2008 .

[19]  M. Martínez-Peña,et al.  Cretaceous–Tertiary tectonic inversion of the Cotiella Basin (southern Pyrenees, Spain) , 2003 .

[20]  A. Hirt,et al.  The anisotropy of magnetic susceptibility in biotite, muscovite and chlorite single crystals , 2003 .

[21]  C. Faccenna,et al.  MAGNETIC FABRIC OF WEAKLY DEFORMED CLAY-RICH SEDIMENTS IN THE ITALIAN PENINSULA : RELATIONSHIP WITH COMPRESSIONAL AND EXTENSIONAL TECTONICS , 1997 .

[22]  P. Arbués,et al.  Architecture of the tectonically influenced Sobrarbe deltaic complex in the Ainsa Basin, northern Spain , 1999 .

[23]  C. Laj,et al.  Magnetic fabric in “undeformed” marine clays from compressional zones , 1986 .

[24]  W. Lowrie,et al.  Anisotropy of magnetic susceptibility in the Scaglia Rossa pelagic limestone , 1987 .

[25]  H. Millán,et al.  Synchronous detachment folds and coeval sedimentation in the Prepyrenean External Sierras (Spain): a case study for a tectonic origin of sequences and systems tracts , 1994 .

[26]  A. Scheidegger On the statistics of the orientation of bedding planes, grain axes, and similar sedimentological data , 1965 .

[27]  D. Günther,et al.  Magnetic anisotropy of calcite at room-temperature , 2006 .

[28]  P. Rochette Magnetic susceptibility of the rock matrix related to magnetic fabric studies , 1987 .

[29]  J. Bouchez Granite is Never Isotropic: An Introduction to AMS Studies of Granitic Rocks , 1997 .

[30]  G. Borradaile Magnetic susceptibility, petrofabrics and strain , 1988 .

[31]  M. Sintubin Clay fabrics in relation to the burial history of shales , 1994 .

[32]  B. Pluijm,et al.  Separation of paramagnetic and ferrimagnetic susceptibilities using low temperature magnetic susceptibilities and comparison with high field methods , 1994 .

[33]  D. Anastasio,et al.  Cleavage development within a foreland fold and thrust belt, southern Pyrenees, Spain , 1995 .

[34]  C. Beaumont,et al.  Factors controlling the Alpine evolution of the central Pyrenees inferred from a comparison of observations and geodynamical models , 2000 .

[35]  C. Kissel,et al.  Paleomagnetic and structural evidence for Neogene block rotations in the Central Apennines, Italy , 1995 .

[36]  A. Teixell,et al.  Platform sedimentation and collapse in a carbonate-dominated margin of a foreland basin (Jaca basin, Eocene, southern Pyrenees) , 1994 .

[37]  D. H. Tarling,et al.  The magnetic anisotropy of rocks , 1993 .

[38]  M. Calvo,et al.  Characterizing the Mesozoic extension direction in the northern Iberian plate margin by anisotropy of magnetic susceptibility (AMS) , 2008, Journal of the Geological Society.

[39]  Cinemática rotacional del cabalgamiento basal surpirenaico en las Sierras Exteriores Aragonesas: Datos magnetotectónicos , 1997 .

[40]  G. Williams,et al.  Constraints on the age of movement of the Montsech and Cotiella Thrusts, south central Pyrenees, Spain , 1987, Journal of the Geological Society.

[41]  F. Storti,et al.  Role of lateral thickness variations on the development of oblique structures at the Western end of the South Pyrenean Central Unit , 2002 .

[42]  J. Muñoz,et al.  Three-dimensional reconstruction of geological surfaces: An example of growth strata and turbidite systems from the Ainsa basin (Pyrenees, Spain) , 2004 .

[43]  B. Pluijm,et al.  Evolution of magnetic fabrics during incipient deformation of mudrocks (Pyrenees, northern Spain) , 1999 .

[44]  J. Muñoz,et al.  Thrust belt development in the eastern pyrenees and related depositional sequences in the southern foreland basin , 1986 .

[45]  P. Cobbold,et al.  Style and history of Andean deformation, Puna plateau, northwestern Argentina , 2001 .

[46]  D. Anastasio,et al.  Kinematics around a large‐scale oblique ramp, southern Pyrenees, Spain , 1995 .

[47]  Christopher Bingham An Antipodally Symmetric Distribution on the Sphere , 1974 .

[48]  D. Günther,et al.  Magnetic anisotropy of carbonate minerals at room temperature and 77 K , 2007 .

[49]  J. Parés,et al.  Determination of the folding mechanism by AMS data. Study of the relation between shortening and magnetic anisotropy in the Pico del Aguila anticline (southern Pyrenees) , 1997 .

[50]  M. B. M. Peña La estructura del límite occidental de la unidad surpirenaica central , 1991 .

[51]  D. Anastasio,et al.  Transverse fold evolution in the External Sierra, southern Pyrenees, Spain , 2001 .

[52]  B. Pluijm,et al.  Slaty cleavage development and magnetic anisotropy fabrics , 1991 .

[53]  E. Mutti Turbidite Systems and Their Relations to Depositional Sequences , 1985 .

[54]  D. Anastasio,et al.  Multiple scales of mechanical stratification and décollement fold kinematics, Sierra Madre Oriental foreland, northeast Mexico , 2007 .

[55]  B. Pluijm,et al.  Evaluating magnetic lineations (AMS) in deformed rocks , 2002 .

[56]  H. A. V. Lunsen Geology of the Ara-Cinca region, Spanish Pyrenees, province of Huesca : (with special reference to compartmentation of the Flysch basin) , 1970 .

[57]  D. Burbank,et al.  Tertiary basins of Spain: Chronology of Eocene foreland basin evolution along the western oblique margin of the South–Central Pyrenees , 1996 .

[58]  Emilio L. Pueyo,et al.  Gradient of shortening and vertical-axis rotations in the Southern Pyrenees (Spain), insights from a synthesis of paleomagnetic data , 2007 .

[59]  J. Parés,et al.  Deformation mechanisms deduced from AMS data in the Jaca-Pamplona basin (southern Pyrenees) , 1997 .

[60]  F. Marra,et al.  Magnetic anisotropy of Plio–Pleistocene sediments from the Adriatic margin of the northern Apennines (Italy): implications for the time–space evolution of the stress field , 1999 .

[61]  V. Jelínek Characterization of the magnetic fabric of rocks , 1981 .