Collaborative Multi-Robot Localization

This paper presents a probabilistic algorithm for collaborative mobile robot localization. Our approach uses a sample-based version of Markov localization, capable of localizing mobile robots in an any-time fashion. When teams of robots localize themselves in the same environment, probabilistic methods are employed to synchronize each robot’s belief whenever one robot detects another. As a result, the robots localize themselves faster, maintain higher accuracy, and high-cost sensors are amortized across multiple robot platforms. The paper also describes experimental results obtained using two mobile robots. The robots detect each other and estimate their relative locations based on computer vision and laser range-finding. The results, obtained in an indoor office environment, illustrate drastic improvements in localization speed and accuracy when compared to conventional single-robot localization.

[1]  Bernt Schiele,et al.  A comparison of position estimation techniques using occupancy grids , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[2]  Wolfram Burgard,et al.  A Monte Carlo Algorithm for Multi-Robot Localization , 1999 .

[3]  P. S. Maybeck,et al.  The Kalman Filter: An Introduction to Concepts , 1990, Autonomous Robot Vehicles.

[4]  Johann Borenstein Control and kinematic design of multi-degree-of freedom mobile robots with compliant linkage , 1995, IEEE Trans. Robotics Autom..

[5]  Randall Smith,et al.  Estimating uncertain spatial relationships in robotics , 1986, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[6]  Kurt Konolige,et al.  Markov Localization using Correlation , 1999, IJCAI.

[7]  Illah R. Nourbakhsh,et al.  DERVISH - An Office-Navigating Robot , 1995, AI Mag..

[8]  Wolfram Burgard,et al.  The Interactive Museum Tour-Guide Robot , 1998, AAAI/IAAI.

[9]  Andrew W. Moore,et al.  Efficient Locally Weighted Polynomial Regression Predictions , 1997, ICML.

[10]  J.-S. Gutmann,et al.  AMOS: comparison of scan matching approaches for self-localization in indoor environments , 1996, Proceedings of the First Euromicro Workshop on Advanced Mobile Robots (EUROBOT '96).

[11]  P. Fearnhead,et al.  An improved particle filter for non-linear problems , 1999 .

[12]  Andrew L. Rukhin,et al.  Tools for statistical inference , 1991 .

[13]  Evangelos E. Milios,et al.  Globally Consistent Range Scan Alignment for Environment Mapping , 1997, Auton. Robots.

[14]  Dieter Fox,et al.  Markov localization - a probabilistic framework for mobile robot localization and navigation , 1998 .

[15]  Randall Smith,et al.  Estimating Uncertain Spatial Relationships in Robotics , 1987, Autonomous Robot Vehicles.

[16]  Gregory Dudek,et al.  Multi-Robot Exploration of an Unknown Environment, Efficiently Reducing the Odometry Error , 1997, IJCAI.

[17]  Sebastian Thrun,et al.  Learning Metric-Topological Maps for Indoor Mobile Robot Navigation , 1998, Artif. Intell..

[18]  Ryo Kurazume,et al.  Cooperative positioning with multiple robots , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[19]  Liqiang Feng,et al.  Navigating Mobile Robots: Systems and Techniques , 1996 .

[20]  Daphne Koller,et al.  Using Learning for Approximation in Stochastic Processes , 1998, ICML.

[21]  Wolfram Burgard,et al.  Monte Carlo Localization: Efficient Position Estimation for Mobile Robots , 1999, AAAI/IAAI.

[22]  Reid G. Simmons,et al.  Probabilistic Robot Navigation in Partially Observable Environments , 1995, IJCAI.

[23]  Wolfram Burgard,et al.  Monte Carlo localization for mobile robots , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[24]  Ingemar J. Cox,et al.  Autonomous Robot Vehicles , 1990, Springer New York.

[25]  Wolfram Burgard,et al.  Estimating the Absolute Position of a Mobile Robot Using Position Probability Grids , 1996, AAAI/IAAI, Vol. 2.

[26]  Wolfram Burgard,et al.  Active Markov localization for mobile robots , 1998, Robotics Auton. Syst..

[27]  Wolfram Burgard,et al.  Experiences with an Interactive Museum Tour-Guide Robot , 1999, Artif. Intell..

[28]  Leslie Pack Kaelbling,et al.  Acting under uncertainty: discrete Bayesian models for mobile-robot navigation , 1996, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS '96.

[29]  Wolfram Burgard,et al.  Using the CONDENSATION algorithm for robust, vision-based mobile robot localization , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[30]  Wolfram Burgard,et al.  Integrating global position estimation and position tracking for mobile robots: the dynamic Markov localization approach , 1998, Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190).

[31]  D. Rubin Using the SIR algorithm to simulate posterior distributions , 1988 .