A Genetic Algorithm for the Multidimensional Knapsack Problem
暂无分享,去创建一个
[1] Hasan Pirkul,et al. A heuristic solution procedure for the multiconstraint zero‐one knapsack problem , 1987 .
[2] Günter Rudolph,et al. Significance of Locality and Selection Pressure in the Grand Deluge Evolutionary Algorithm , 1996, PPSN.
[3] Kurt Jörnsten,et al. Tabu Search for General Zero-One Integer Programs Using the Pivot and Complement Heuristic , 1994, INFORMS J. Comput..
[4] Saïd Hanafi,et al. An efficient tabu search approach for the 0-1 multidimensional knapsack problem , 1998, Eur. J. Oper. Res..
[5] Bull,et al. An Overview of Genetic Algorithms: Part 2, Research Topics , 1993 .
[6] H. Martin Weingartner,et al. Methods for the Solution of the Multidimensional 0/1 Knapsack Problem , 1967, Operational Research.
[7] Zbigniew Michalewicz,et al. Handbook of Evolutionary Computation , 1997 .
[8] Irène Charon,et al. The noising method: a new method for combinatorial optimization , 1993, Oper. Res. Lett..
[9] Paolo Toth,et al. Knapsack Problems: Algorithms and Computer Implementations , 1990 .
[10] J. Galletly. An Overview of Genetic Algorithms , 1992 .
[11] Michael M. Skolnick,et al. Using Genetic Algorithms in Engineering Design Optimization with Non-Linear Constraints , 1993, ICGA.
[12] A. Frieze,et al. Approximation algorithms for the m-dimensional 0–1 knapsack problem: Worst-case and probabilistic analyses , 1984 .
[13] Ralph E. Gomory,et al. The Theory and Computation of Knapsack Functions , 1966, Oper. Res..
[14] A Volgenant,et al. An Improved Heuristic for Multidimensional 0-1 Knapsack Problems , 1990 .
[15] David Beasley,et al. An overview of genetic algorithms: Part 1 , 1993 .
[16] Alexander H. G. Rinnooy Kan,et al. A Class of Generalized Greedy Algorithms for the Multi-Knapsack Problem , 1993, Discret. Appl. Math..
[17] Günter Rudolph,et al. A cellular genetic algorithm with self-adjusting acceptance threshold , 1995 .
[18] Stelios H. Zanakis,et al. Heuristic 0-1 Linear Programming: An Experimental Comparison of Three Methods , 1977 .
[19] Gunar E. Liepins,et al. Some Guidelines for Genetic Algorithms with Penalty Functions , 1989, ICGA.
[20] A. Victor Cabot,et al. An Enumeration Algorithm for Knapsack Problems , 1970, Oper. Res..
[21] Yves Crama,et al. On The Strength Of Relaxations Of Multidimensional Knapsack Problems , 1994 .
[22] Paul C. H. Chu,et al. A genetic algorithm approach for combinatorial optimisation problems , 1997 .
[23] Kurt Jörnsten,et al. Tabu search within a pivot and complement framework , 1994 .
[24] Gerhard W. Dueck,et al. Threshold accepting: a general purpose optimization algorithm appearing superior to simulated anneal , 1990 .
[25] Fred W. Glover. Optimization by ghost image processes in neural networks , 1994, Comput. Oper. Res..
[26] E. Balas. An Additive Algorithm for Solving Linear Programs with Zero-One Variables , 1965 .
[27] F. Glover. HEURISTICS FOR INTEGER PROGRAMMING USING SURROGATE CONSTRAINTS , 1977 .
[28] Gary D. Scudder,et al. A heuristic with tie breaking for certain 0–1 integer programming models , 1985 .
[29] Krzysztof Szkatuła. The growth of multi-constraint random knapsacks with various right-hand sides of the constraints , 1994 .
[30] G. Nemhauser,et al. Discrete Dynamic Programming and Capital Allocation , 1969 .
[31] G. Dantzig. Discrete-Variable Extremum Problems , 1957 .
[32] Arnaud Fréville,et al. An Efficient Preprocessing Procedure for the Multidimensional 0- 1 Knapsack Problem , 1994, Discret. Appl. Math..
[33] Susan Powell,et al. Fortran codes for mathematical programming: linear, quadratic and discrete , 1973 .
[34] Jae Sik Lee,et al. An approximate algorithm for multidimensional zero-one knapsack problems , 1988 .
[35] H. Weingartner,et al. Mathematical Programming and the Analysis of Capital Budgeting Problems. , 1964 .
[36] Hasan Pirkul,et al. ALLOCATION OF DATA BASES AND PROCESSORS IN A DISTRIBUTED COMPUTING SYSTEM. , 1982 .
[37] Dorothea Heiss-Czedik,et al. An Introduction to Genetic Algorithms. , 1997, Artificial Life.
[38] Harvey J. Everett. Generalized Lagrange Multiplier Method for Solving Problems of Optimum Allocation of Resources , 1963 .
[39] J. Beasley,et al. A genetic algorithm for the set covering problem , 1996 .
[40] S. Senju,et al. An Approach to Linear Programming with 0--1 Variables , 1968 .
[41] Bruce A. McCarl,et al. A HEURISTIC FOR GENERAL INTEGER PROGRAMMING , 1974 .
[42] John E. Beasley,et al. A genetic algorithm for the generalised assignment problem , 1997, Comput. Oper. Res..
[43] Wei Shih,et al. A Branch and Bound Method for the Multiconstraint Zero-One Knapsack Problem , 1979 .
[44] C. Reeves. Modern heuristic techniques for combinatorial problems , 1993 .
[45] Richard Loulou,et al. New Greedy-Like Heuristics for the Multidimensional 0-1 Knapsack Problem , 1979, Oper. Res..
[46] S. Voß,et al. Some Experiences On Solving Multiconstraint Zero-One Knapsack Problems With Genetic Algorithms , 1994 .
[47] E. Balas,et al. Pivot and Complement–A Heuristic for 0-1 Programming , 1980 .
[48] Fred Glover,et al. Critical Event Tabu Search for Multidimensional Knapsack Problems , 1996 .
[49] Thomas Bäck,et al. The zero/one multiple knapsack problem and genetic algorithms , 1994, SAC '94.
[50] Osman Oguz,et al. A heuristic algorithm for the multidimensional zero-one knapsack problem , 1984 .
[51] John H. Holland,et al. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .
[52] Arnaud Fréville,et al. The 0-1 bidimensional knapsack problem: Toward an efficient high-level primitive tool , 1996, J. Heuristics.
[53] José F. Fontanari,et al. A statistical analysis of the knapsack problem , 1995 .
[54] A. Fréville,et al. Heuristics and reduction methods for multiple constraints 0-1 linear programming problems , 1986 .
[55] Igor Averbakh. Probabilistic properties of the dual structure of the multidimensional knapsack problem and fast statistically efficient algorithms , 1994, Math. Program..
[56] John E. Beasley,et al. OR-Library: Distributing Test Problems by Electronic Mail , 1990 .
[57] Fred Glover,et al. Probabilistic Move Selection in Tabu Search for Zero-One Mixed Integer Programming Problems , 1996 .
[58] G. Dueck. New optimization heuristics , 1993 .
[59] Saïd Hanafi,et al. Comparison of Heuristics for the 0–1 Multidimensional Knapsack Problem , 1996 .
[60] R. Battiti,et al. Local search with memory: benchmarking RTS , 1995 .
[61] David E. Goldberg,et al. Genetic Algorithms in Search Optimization and Machine Learning , 1988 .
[62] John E. Beasley,et al. Constraint Handling in Genetic Algorithms: The Set Partitioning Problem , 1998, J. Heuristics.
[63] Zbigniew Michalewicz,et al. A Perspective on Evolutionary Computation , 1993, Evo Workshops.
[64] F. Glover. A Multiphase-Dual Algorithm for the Zero-One Integer Programming Problem , 1965 .
[65] Stefan Voß,et al. Dynamic tabu list management using the reverse elimination method , 1993, Ann. Oper. Res..
[66] Hasan Pirkul,et al. Efficient algorithms for solving multiconstraint zero-one knapsack problems to optimality , 1985, Math. Program..
[67] Kenneth Schilling. The growth of m-constraint random knapsacks , 1990 .
[68] Y. Toyoda. A Simplified Algorithm for Obtaining Approximate Solutions to Zero-One Programming Problems , 1975 .
[69] John E. Beasley,et al. Obtaining test problems via Internet , 1996, J. Glob. Optim..
[70] Fred W. Glover,et al. Solving zero-one mixed integer programming problems using tabu search , 1998, European Journal of Operational Research.
[71] Frederick S. Hillier,et al. Efficient Heuristic Procedures for Integer Linear Programming with an Interior , 1969, Oper. Res..
[72] K. Szkatuza. The growth of multi-constraint random knapsacks with large right-hand sides of the constraints , 1997, Oper. Res. Lett..
[73] Alice E. Smith,et al. Genetic Optimization Using A Penalty Function , 1993, ICGA.
[74] A. L. Soyster,et al. Zero-one programming with many variables and few constraints , 1978 .