A Genetic Algorithm for the Multidimensional Knapsack Problem

In this paper we present a heuristic based upon genetic algorithms for the multidimensional knapsack problem. A heuristic operator which utilises problem-specific knowledge is incorporated into the standard genetic algorithm approach. Computational results show that the genetic algorithm heuristic is capable of obtaining high-quality solutions for problems of various characteristics, whilst requiring only a modest amount of computational effort. Computational results also show that the genetic algorithm heuristic gives superior quality solutions to a number of other heuristics.

[1]  Hasan Pirkul,et al.  A heuristic solution procedure for the multiconstraint zero‐one knapsack problem , 1987 .

[2]  Günter Rudolph,et al.  Significance of Locality and Selection Pressure in the Grand Deluge Evolutionary Algorithm , 1996, PPSN.

[3]  Kurt Jörnsten,et al.  Tabu Search for General Zero-One Integer Programs Using the Pivot and Complement Heuristic , 1994, INFORMS J. Comput..

[4]  Saïd Hanafi,et al.  An efficient tabu search approach for the 0-1 multidimensional knapsack problem , 1998, Eur. J. Oper. Res..

[5]  Bull,et al.  An Overview of Genetic Algorithms: Part 2, Research Topics , 1993 .

[6]  H. Martin Weingartner,et al.  Methods for the Solution of the Multidimensional 0/1 Knapsack Problem , 1967, Operational Research.

[7]  Zbigniew Michalewicz,et al.  Handbook of Evolutionary Computation , 1997 .

[8]  Irène Charon,et al.  The noising method: a new method for combinatorial optimization , 1993, Oper. Res. Lett..

[9]  Paolo Toth,et al.  Knapsack Problems: Algorithms and Computer Implementations , 1990 .

[10]  J. Galletly An Overview of Genetic Algorithms , 1992 .

[11]  Michael M. Skolnick,et al.  Using Genetic Algorithms in Engineering Design Optimization with Non-Linear Constraints , 1993, ICGA.

[12]  A. Frieze,et al.  Approximation algorithms for the m-dimensional 0–1 knapsack problem: Worst-case and probabilistic analyses , 1984 .

[13]  Ralph E. Gomory,et al.  The Theory and Computation of Knapsack Functions , 1966, Oper. Res..

[14]  A Volgenant,et al.  An Improved Heuristic for Multidimensional 0-1 Knapsack Problems , 1990 .

[15]  David Beasley,et al.  An overview of genetic algorithms: Part 1 , 1993 .

[16]  Alexander H. G. Rinnooy Kan,et al.  A Class of Generalized Greedy Algorithms for the Multi-Knapsack Problem , 1993, Discret. Appl. Math..

[17]  Günter Rudolph,et al.  A cellular genetic algorithm with self-adjusting acceptance threshold , 1995 .

[18]  Stelios H. Zanakis,et al.  Heuristic 0-1 Linear Programming: An Experimental Comparison of Three Methods , 1977 .

[19]  Gunar E. Liepins,et al.  Some Guidelines for Genetic Algorithms with Penalty Functions , 1989, ICGA.

[20]  A. Victor Cabot,et al.  An Enumeration Algorithm for Knapsack Problems , 1970, Oper. Res..

[21]  Yves Crama,et al.  On The Strength Of Relaxations Of Multidimensional Knapsack Problems , 1994 .

[22]  Paul C. H. Chu,et al.  A genetic algorithm approach for combinatorial optimisation problems , 1997 .

[23]  Kurt Jörnsten,et al.  Tabu search within a pivot and complement framework , 1994 .

[24]  Gerhard W. Dueck,et al.  Threshold accepting: a general purpose optimization algorithm appearing superior to simulated anneal , 1990 .

[25]  Fred W. Glover Optimization by ghost image processes in neural networks , 1994, Comput. Oper. Res..

[26]  E. Balas An Additive Algorithm for Solving Linear Programs with Zero-One Variables , 1965 .

[27]  F. Glover HEURISTICS FOR INTEGER PROGRAMMING USING SURROGATE CONSTRAINTS , 1977 .

[28]  Gary D. Scudder,et al.  A heuristic with tie breaking for certain 0–1 integer programming models , 1985 .

[29]  Krzysztof Szkatuła The growth of multi-constraint random knapsacks with various right-hand sides of the constraints , 1994 .

[30]  G. Nemhauser,et al.  Discrete Dynamic Programming and Capital Allocation , 1969 .

[31]  G. Dantzig Discrete-Variable Extremum Problems , 1957 .

[32]  Arnaud Fréville,et al.  An Efficient Preprocessing Procedure for the Multidimensional 0- 1 Knapsack Problem , 1994, Discret. Appl. Math..

[33]  Susan Powell,et al.  Fortran codes for mathematical programming: linear, quadratic and discrete , 1973 .

[34]  Jae Sik Lee,et al.  An approximate algorithm for multidimensional zero-one knapsack problems , 1988 .

[35]  H. Weingartner,et al.  Mathematical Programming and the Analysis of Capital Budgeting Problems. , 1964 .

[36]  Hasan Pirkul,et al.  ALLOCATION OF DATA BASES AND PROCESSORS IN A DISTRIBUTED COMPUTING SYSTEM. , 1982 .

[37]  Dorothea Heiss-Czedik,et al.  An Introduction to Genetic Algorithms. , 1997, Artificial Life.

[38]  Harvey J. Everett Generalized Lagrange Multiplier Method for Solving Problems of Optimum Allocation of Resources , 1963 .

[39]  J. Beasley,et al.  A genetic algorithm for the set covering problem , 1996 .

[40]  S. Senju,et al.  An Approach to Linear Programming with 0--1 Variables , 1968 .

[41]  Bruce A. McCarl,et al.  A HEURISTIC FOR GENERAL INTEGER PROGRAMMING , 1974 .

[42]  John E. Beasley,et al.  A genetic algorithm for the generalised assignment problem , 1997, Comput. Oper. Res..

[43]  Wei Shih,et al.  A Branch and Bound Method for the Multiconstraint Zero-One Knapsack Problem , 1979 .

[44]  C. Reeves Modern heuristic techniques for combinatorial problems , 1993 .

[45]  Richard Loulou,et al.  New Greedy-Like Heuristics for the Multidimensional 0-1 Knapsack Problem , 1979, Oper. Res..

[46]  S. Voß,et al.  Some Experiences On Solving Multiconstraint Zero-One Knapsack Problems With Genetic Algorithms , 1994 .

[47]  E. Balas,et al.  Pivot and Complement–A Heuristic for 0-1 Programming , 1980 .

[48]  Fred Glover,et al.  Critical Event Tabu Search for Multidimensional Knapsack Problems , 1996 .

[49]  Thomas Bäck,et al.  The zero/one multiple knapsack problem and genetic algorithms , 1994, SAC '94.

[50]  Osman Oguz,et al.  A heuristic algorithm for the multidimensional zero-one knapsack problem , 1984 .

[51]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[52]  Arnaud Fréville,et al.  The 0-1 bidimensional knapsack problem: Toward an efficient high-level primitive tool , 1996, J. Heuristics.

[53]  José F. Fontanari,et al.  A statistical analysis of the knapsack problem , 1995 .

[54]  A. Fréville,et al.  Heuristics and reduction methods for multiple constraints 0-1 linear programming problems , 1986 .

[55]  Igor Averbakh Probabilistic properties of the dual structure of the multidimensional knapsack problem and fast statistically efficient algorithms , 1994, Math. Program..

[56]  John E. Beasley,et al.  OR-Library: Distributing Test Problems by Electronic Mail , 1990 .

[57]  Fred Glover,et al.  Probabilistic Move Selection in Tabu Search for Zero-One Mixed Integer Programming Problems , 1996 .

[58]  G. Dueck New optimization heuristics , 1993 .

[59]  Saïd Hanafi,et al.  Comparison of Heuristics for the 0–1 Multidimensional Knapsack Problem , 1996 .

[60]  R. Battiti,et al.  Local search with memory: benchmarking RTS , 1995 .

[61]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[62]  John E. Beasley,et al.  Constraint Handling in Genetic Algorithms: The Set Partitioning Problem , 1998, J. Heuristics.

[63]  Zbigniew Michalewicz,et al.  A Perspective on Evolutionary Computation , 1993, Evo Workshops.

[64]  F. Glover A Multiphase-Dual Algorithm for the Zero-One Integer Programming Problem , 1965 .

[65]  Stefan Voß,et al.  Dynamic tabu list management using the reverse elimination method , 1993, Ann. Oper. Res..

[66]  Hasan Pirkul,et al.  Efficient algorithms for solving multiconstraint zero-one knapsack problems to optimality , 1985, Math. Program..

[67]  Kenneth Schilling The growth of m-constraint random knapsacks , 1990 .

[68]  Y. Toyoda A Simplified Algorithm for Obtaining Approximate Solutions to Zero-One Programming Problems , 1975 .

[69]  John E. Beasley,et al.  Obtaining test problems via Internet , 1996, J. Glob. Optim..

[70]  Fred W. Glover,et al.  Solving zero-one mixed integer programming problems using tabu search , 1998, European Journal of Operational Research.

[71]  Frederick S. Hillier,et al.  Efficient Heuristic Procedures for Integer Linear Programming with an Interior , 1969, Oper. Res..

[72]  K. Szkatuza The growth of multi-constraint random knapsacks with large right-hand sides of the constraints , 1997, Oper. Res. Lett..

[73]  Alice E. Smith,et al.  Genetic Optimization Using A Penalty Function , 1993, ICGA.

[74]  A. L. Soyster,et al.  Zero-one programming with many variables and few constraints , 1978 .