Measure conjugacy invariants for actions of countable sofic groups

Sofic groups were defined implicitly by Gromov in [Gr99] and explicitly by Weiss in [We00]. All residually finite groups (and hence every linear group) is sofic. The purpose of this paper is to introduce, for every countable sofic group $G$, a family of measure-conjugacy invariants for measure-preserving $G$-actions on probability spaces. These invariants generalize Kolmogorov-Sinai entropy for actions of amenable groups. They are computed exactly for Bernoulli shifts over $G$, leading to a complete classification of Bernoulli systems up to measure-conjugacy for many groups including all countable linear groups. Recent rigidity results of Y. Kida and S. Popa are utilized to classify Bernoulli shifts over mapping class groups and property T groups up to orbit equivalence and von Neumann equivalence respectively.

[1]  D. Mcduff Central Sequences and the Hyperfinite Factor , 1970 .

[2]  Benjamin Weiss,et al.  An amenable equivalence relation is generated by a single transformation , 1981, Ergodic Theory and Dynamical Systems.

[3]  D. Ornstein Bernoulli shifts with the same entropy are isomorphic , 1970 .

[4]  D. Ornstein Two Bernoulli shifts with infinite entropy are isomorphic , 1970 .

[5]  A. Connes,et al.  Classification of Injective Factors Cases II 1 , II ∞ , III λ , λ 1 , 1976 .

[6]  Eli Glasner,et al.  Ergodic Theory via Joinings , 2003 .

[7]  Anatole Katok,et al.  FIFTY YEARS OF ENTROPY IN DYNAMICS: 1958-2007 , 2007 .

[8]  E. Grossman On the Residual Finiteness of Certain Mapping Class Groups , 1974 .

[9]  Y. Shalom Measurable Group Theory , 2005 .

[10]  I. Singer Automorphisms of Finite Factors , 1955 .

[11]  H. Rindler Groups of measure preserving transformations. II , 1988 .

[12]  J. Neumann,et al.  On Rings of Operators. III , 1940 .

[13]  Benjamin Weiss,et al.  Ergodic theory of amenable group actions. I: The Rohlin lemma , 1980 .

[14]  Orbit equivalence rigidity for ergodic actions of the mapping class group , 2006, math/0607601.

[15]  William Parry,et al.  Entropy and generators in ergodic theory , 1966 .

[16]  V. Jones Von Neumann algebras in methematics and physics , 1990 .

[17]  C. Caramanis What is ergodic theory , 1963 .

[18]  Endre Szabó,et al.  Hyperlinearity, essentially free actions and L2-invariants. The sofic property , 2004 .

[19]  Weak isomorphisms between Bernoulli shifts , 2008, 0812.2718.

[20]  H. Dye ON GROUPS OF MEASURE PRESERVING TRANSFORMATIONS. I. , 1959 .

[21]  Pierre de la Harpe,et al.  La propriété (T) de Kazhdan pour les groupes localement compacts , 1989 .

[22]  Theworkof Alain Connes CLASSIFICATION OF INJECTIVE FACTORS , 1981 .

[23]  L. Bowen A measure-conjugacy invariant for free group actions , 2008, 0802.4294.

[24]  Endre Szabó,et al.  On sofic groups , 2003, math/0305352.

[25]  Ja. G. Sinaĭ Weak Isomorphism of Transformations with Invariant Measure , 2010 .

[26]  A. I︠u︡. Olʹshanskiĭ,et al.  Geometry of defining relations in groups , 1991 .

[27]  B. Weiss Groups of measure preserving transformations , 1973 .

[28]  Benjamin Weiss,et al.  SOFIC GROUPS AND DYNAMICAL SYSTEMS , 2000 .

[29]  Vladimir Pestov,et al.  Hyperlinear and Sofic Groups: A Brief Guide , 2008, Bulletin of Symbolic Logic.

[30]  A. Ol'shanskii,et al.  Geometry of Defining Relations in Groups , 1991 .

[31]  P. Porcelli,et al.  On rings of operators , 1967 .

[32]  von Neumann algebras Deformation and rigidity for group actions and von Neumann algebras , 2006 .

[33]  Misha Gromov,et al.  Endomorphisms of symbolic algebraic varieties , 1999 .

[34]  Lewis Bowen,et al.  The ergodic theory of free group actions: entropy and the f-invariant , 2009, 0902.0174.

[35]  Strong rigidity of II1 factors arising from malleable actions of w-rigid groups, I , 2003, math/0305306.

[36]  Ralph Duncan James,et al.  Proceedings of the International Congress of Mathematicians , 1975 .

[37]  Gregory Margulis,et al.  Finitely-additive invariant measures on Euclidean spaces , 1982, Ergodic Theory and Dynamical Systems.

[38]  G. A. Soifer,et al.  Free Subgroups of Linear Groups , 2007 .

[39]  J. Schwartz Two finite, non-hyperfinite, non-isomorphic factors , 1963 .

[40]  On the superrigidity of malleable actions with spectral gap , 2006, math/0608429.

[41]  John C. Kieffer,et al.  A Generalized Shannon-McMillan Theorem for the Action of an Amenable Group on a Probability Space , 1975 .

[42]  Benjamin Weiss,et al.  Entropy and isomorphism theorems for actions of amenable groups , 1987 .

[43]  Lewis Bowen Periodicity and Circle Packings of the Hyperbolic Plane , 2003 .