Supersymmetry without a Light Higgs Boson

Motivated by the absence, so far, of any direct signal of conventional low-energy supersymmetry, we explore the consequences of making the lightest Higgs boson in supersymmetry relatively heavy, up to about 300 GeV, in the most straightforward way, i.e. via the introduction of a chiral singlet S with a superpotential interaction with the Higgs doublets, {lambda}SH{sub 1}H{sub 2}. The coupling {lambda} dominates over all the other couplings and, to maintain the successful perturbative analysis of the electroweak precision tests, is only restricted to remain perturbative up to about 10 TeV. The general features of this '{lambda}SUSY' framework, which deviates significantly from the minimal supersymmetric standard model or the standard next to minimal supersymmetric standard model, are analyzed in different areas: electroweak precision tests, dark matter, naturalness bounds on superparticle masses, and LHC signals. There is a rich Higgs/Higgsino sector in the (200-700) GeV mass region, which may include LSP Higgsino dark matter. All other superpartners, apart from the top squarks, may naturally be heavier than 1-2 TeV.

[1]  B. Gripaios,et al.  Improved Higgs naturalness with or without supersymmetry , 2006, hep-ph/0603229.

[2]  L. Hall,et al.  Improved naturalness with a heavy Higgs boson: An alternative road to CERN LHC physics , 2006, hep-ph/0603188.

[3]  The Aleph Collaboration,et al.  Precision electroweak measurements on the Z resonance , 2005, hep-ex/0509008.

[4]  J. Wacker,et al.  D-terms, unification, and the Higgs mass , 2004, hep-ph/0409127.

[5]  L. Hall,et al.  Improved Naturalness and the Two Higgs Doublet Model , 2005, hep-ph/0510243.

[6]  T. Tait,et al.  A fat Higgs with a fat top , 2005, hep-ph/0504224.

[7]  C. Kolda,et al.  Perturbative unification and Higgs boson mass bounds , 2004, hep-ph/0410085.

[8]  M. Neubert Renormalization-group improved calculation of the $B\to X_s\gamma$ branching ratio , 2004, hep-ph/0408179.

[9]  J. Espinosa,et al.  The MSSM fine tuning problem: a way out , 2003, hep-ph/0310137.

[10]  A. Holzner Search for the standard model Higgs boson at LEP , 2002, hep-ex/0208045.

[11]  J. Wells,et al.  Higgs boson mass limits in perturbative unification theories , 2002, hep-ph/0204196.

[12]  M. Misiak,et al.  Quark mass effects in B -> Xs gamma , 2001, hep-ph/0104034.

[13]  S. Su,et al.  More corrections to the Higgs mass in supersymmetry , 2000, hep-ph/0010113.

[14]  J. Gunion,et al.  Do precision electroweak constraints guarantee e+e− collider discovery of at least one Higgs boson of a two-Higgs-doublet model? , 2000, hep-ph/0009271.

[15]  A. Strumia,et al.  The `LEP paradox' , 2000, hep-ph/0007265.

[16]  D. P. Roy,et al.  Does LEP prefer the NMSSM , 2000, hep-ph/0006198.

[17]  J. Espinosa,et al.  GAUGE UNIFICATION AND THE SUPERSYMMETRIC LIGHT HIGGS MASS , 1998, hep-ph/9804235.

[18]  M. Drees,et al.  Neutralino-nucleon scattering reexamined. , 1993, Physical review. D, Particles and fields.

[19]  Michael S. Turner,et al.  The early Universe , 1981, Nature.