LOSS Revisited. I. Unraveling Correlations between Supernova Rates and Galaxy Properties, as Measured in a Reanalysis of the Lick Observatory Supernova Search

Most types of supernovae (SNe) have yet to be connected with their progenitor stellar systems. Here, we reanalyze the 10-year SN sample collected during 1998–2008 by the Lick Observatory Supernova Search (LOSS) in order to constrain the progenitors of SNe Ia and stripped-envelope SNe (SE SNe, i.e., SNe IIb, Ib, Ic, and broad-lined Ic). We matched the LOSS galaxy sample with spectroscopy from the Sloan Digital Sky Survey and measured SN rates as a function of galaxy stellar mass, specific star formation rate, and oxygen abundance (metallicity). We find significant correlations between the SN rates and all three galaxy properties. The SN Ia correlations are consistent with other measurements, as well as with our previous explanation of these measurements in the form of a combination of the SN Ia delay-time distribution and the correlation between galaxy mass and age. The ratio between the SE SN and SN II rates declines significantly in low-mass galaxies. This rules out single stars as SE SN progenitors, and is consistent with predictions from binary-system progenitor models. Using well-known galaxy scaling relations, any correlation between the rates and one of the galaxy properties examined here can be expressed as a correlation with the other two. These redundant correlations preclude us from establishing causality—that is, from ascertaining which of the galaxy properties (or their combination) is the physical driver for the difference between the SE SN and SN II rates. We outline several methods that have the potential to overcome this problem in future works.

[1]  S. Smartt,et al.  Superluminous supernova progenitors have a half-solar metallicity threshold , 2016, 1605.04925.

[2]  O. Graur,et al.  LOSS Revisited. II. The Relative Rates of Different Types of Supernovae Vary between Low- and High-mass Galaxies , 2016, 1609.02923.

[3]  O. Graur,et al.  Revisiting the Lick Observatory Supernova Search Volume-limited Sample: Updated Classifications and Revised Stripped-envelope Supernova Fractions , 2016, 1609.02922.

[4]  P. Vreeswijk,et al.  HOST-GALAXY PROPERTIES OF 32 LOW-REDSHIFT SUPERLUMINOUS SUPERNOVAE FROM THE PALOMAR TRANSIENT FACTORY , 2016, 1604.08207.

[5]  Adam A. Miller,et al.  DISAPPEARANCE OF THE PROGENITOR OF SUPERNOVA iPTF13bvn , 2016, 1604.06821.

[6]  J. Maund,et al.  The disappearance of the helium-giant progenitor of the Type Ib supernova iPTF13bvn and constraints on its companion , 2016, 1604.05050.

[7]  E. Stanway,et al.  BPASS predictions for binary black hole mergers , 2016, 1602.03790.

[8]  E. Stanway,et al.  Stellar population effects on the inferred photon density at reionization , 2015, 1511.03268.

[9]  O. Graur,et al.  LATE-TIME PHOTOMETRY OF TYPE IA SUPERNOVA SN 2012cg REVEALS THE RADIOACTIVE DECAY OF 57Co , 2015, 1505.00777.

[10]  David Bersier,et al.  Bolometric light curves and explosion parameters of 38 stripped-envelope core-collapse supernovae , 2014, 1406.3667.

[11]  E. Zapartas,et al.  CONSTRAINTS ON THE BINARY COMPANION TO THE SN Ic 1994I PROGENITOR , 2015, 1601.00002.

[12]  O. Graur,et al.  ANALYZING THE LARGEST SPECTROSCOPIC DATA SET OF STRIPPED SUPERNOVAE TO IMPROVE THEIR IDENTIFICATIONS AND CONSTRAIN THEIR PROGENITORS , 2015, 1510.08049.

[13]  Michael P. Rupen,et al.  A DEEP SEARCH FOR PROMPT RADIO EMISSION FROM THERMONUCLEAR SUPERNOVAE WITH THE VERY LARGE ARRAY , 2015, 1510.07662.

[14]  Stripped-envelope supernova rates and host-galaxy properties , 2015, Proceedings of the International Astronomical Union.

[15]  L. Galbany,et al.  Statistical Studies of Supernova Environments , 2015, Publications of the Astronomical Society of Australia.

[16]  S. Smartt Observational Constraints on the Progenitors of Core-Collapse Supernovae: The Case for Missing High-Mass Stars , 2015, Publications of the Astronomical Society of Australia.

[17]  Sung-Chul Yoon Evolutionary Models for Type Ib/c Supernova Progenitors , 2015, Publications of the Astronomical Society of Australia.

[18]  O. Graur,et al.  A unified explanation for the supernova rate-galaxy mass dependence based on supernovae detected in Sloan galaxy spectra , 2014, 1412.7991.

[19]  C. Kochanek,et al.  The search for failed supernovae with the Large Binocular Telescope: first candidates , 2014, 1411.1761.

[20]  S. Smartt,et al.  Possible binary progenitors for the Type Ib supernova iPTF13bvn , 2014, 1408.4142.

[21]  J. Prieto,et al.  Type Ia supernovae with bimodal explosions are common – possible smoking gun for direct collisions of white dwarfs , 2014, 1401.3347.

[22]  J. Brinchmann,et al.  A CRITICAL LOOK AT THE MASS–METALLICITY–STAR FORMATION RATE RELATION IN THE LOCAL UNIVERSE. I. AN IMPROVED ANALYSIS FRAMEWORK AND CONFOUNDING SYSTEMATICS , 2014, 1411.7391.

[23]  L. Galbany,et al.  Nearby supernova host galaxies from the CALIFA Survey , 2014, 1603.07808.

[24]  T. A. Nazaryan,et al.  Supernovae and their host galaxies – II. The relative frequencies of supernovae types in spirals , 2014, 1407.6896.

[25]  J. Strader,et al.  The SLUGGS survey: exploring the metallicity gradients of nearby early-type galaxies to large radii , 2014, 1405.2338.

[26]  R. Kirshner,et al.  NO X-RAYS FROM THE VERY NEARBY TYPE Ia SN 2014J: CONSTRAINTS ON ITS ENVIRONMENT , 2014, 1405.1488.

[27]  K. Nomoto,et al.  iPTF13bvn: THE FIRST EVIDENCE OF A BINARY PROGENITOR FOR A TYPE Ib SUPERNOVA , 2014, 1403.7288.

[28]  S. Jha,et al.  OPTICAL SPECTRA OF 73 STRIPPED-ENVELOPE CORE-COLLAPSE SUPERNOVAE , 2014, 1405.1910.

[29]  S. B. Cenko,et al.  The Rise and Fall of the Type Ib Supernova iPTF13bvn Not a Massive Wolf-Rayet Star , 2014, 1403.6708.

[30]  Ori D. Fox,et al.  CONSTRAINTS ON THE PROGENITOR SYSTEM OF THE TYPE Ia SUPERNOVA 2014J FROM PRE-EXPLOSION HUBBLE SPACE TELESCOPE IMAGING , 2014, 1403.4250.

[31]  O. Graur,et al.  Progenitor constraints on the Type-Ia supernova SN2011fe from pre-explosion Hubble Space Telescope He ii narrow-band observations , 2014, 1403.1878.

[32]  N. Smith Mass Loss: Its Effect on the Evolution and Fate of High-Mass Stars , 2014, 1402.1237.

[33]  David O. Jones,et al.  TYPE Ia SUPERNOVA RATE MEASUREMENTS TO REDSHIFT 2.5 FROM CANDELS: SEARCHING FOR PROMPT EXPLOSIONS IN THE EARLY UNIVERSE , 2014, 1401.7978.

[34]  Andrew J. Connolly,et al.  Statistics, Data Mining, and Machine Learning in Astronomy , 2014 .

[35]  U. L. Laguna,et al.  Improved Hubble Space Telescope Proper Motions for Tycho-G and Other Stars in the Remnant of Tycho's Supernova 1572 , 2013, 1312.5640.

[36]  William H. Lee,et al.  THE TYPE IIb SUPERNOVA 2013df AND ITS COOL SUPERGIANT PROGENITOR , 2013, 1312.3984.

[37]  S. D. Mink,et al.  THE INCIDENCE OF STELLAR MERGERS AND MASS GAINERS AMONG MASSIVE STARS , 2013, 1312.3650.

[38]  Filippo Mannucci,et al.  Observational Clues to the Progenitors of Type Ia Supernovae , 2013, 1312.0628.

[39]  S. B. Cenko,et al.  TYPE-Ia SUPERNOVA RATES TO REDSHIFT 2.4 FROM CLASH: THE CLUSTER LENSING AND SUPERNOVA SURVEY WITH HUBBLE , 2013, 1310.3495.

[40]  P. Kroupa,et al.  The galaxy-wide initial mass function of dwarf late-type to massive early-type galaxies , 2013, 1309.6634.

[41]  Jose H. Groh,et al.  Fundamental properties of core-collapse Supernova and GRB progenitors: predicting the look of massive stars before death , 2013, 1308.4681.

[42]  C. Georgy,et al.  Progenitors of supernova Ibc: a single Wolf-Rayet star as the possible progenitor of the SN Ib iPTF13bvn , 2013, 1307.8434.

[43]  L. Galbany,et al.  The O3N2 and N2 abundance indicators revisited: improved calibrations based on CALIFA and T e-based literature data , 2013, 1307.5316.

[44]  Peter E. Nugent,et al.  DISCOVERY, PROGENITOR AND EARLY EVOLUTION OF A STRIPPED ENVELOPE SUPERNOVA iPTF13bvn , 2013, 1307.1470.

[45]  Z. Cano A new method for estimating the bolometric properties of Ibc supernovae , 2013, 1306.1488.

[46]  Wei Zheng,et al.  THE PROGENITOR OF SUPERNOVA 2011dh HAS VANISHED , 2013, 1305.3436.

[47]  H. Ferguson,et al.  THE STELLAR INITIAL MASS FUNCTION OF ULTRA-FAINT DWARF GALAXIES: EVIDENCE FOR IMF VARIATIONS WITH GALACTIC ENVIRONMENT , 2013, 1304.7769.

[48]  Eli Livne,et al.  HEAD-ON COLLISIONS OF WHITE DWARFS IN TRIPLE SYSTEMS COULD EXPLAIN TYPE Ia SUPERNOVAE , 2013, 1303.1180.

[49]  W. Hillebrandt,et al.  Towards an understanding of Type Ia supernovae from a synthesis of theory and observations , 2013, 1302.6420.

[50]  A. Heger,et al.  THE METALLICITY DEPENDENCE OF THE MINIMUM MASS FOR CORE-COLLAPSE SUPERNOVAE , 2013, 1301.5783.

[51]  G. Nelemans,et al.  Population synthesis of triple systems in the context of mergers of carbon–oxygen white dwarfs , 2013, 1301.1469.

[52]  S. D. Mink,et al.  THE ROTATION RATES OF MASSIVE STARS: THE ROLE OF BINARY INTERACTION THROUGH TIDES, MASS TRANSFER, AND MERGERS , 2012, 1211.3742.

[53]  B. Andrews,et al.  THE MASS–METALLICITY RELATION WITH THE DIRECT METHOD ON STACKED SPECTRA OF SDSS GALAXIES , 2012, 1211.3418.

[54]  W. E. Kerzendorf,et al.  A HIGH-RESOLUTION SPECTROSCOPIC SEARCH FOR THE REMAINING DONOR FOR TYCHO'S SUPERNOVA , 2012, 1210.2713.

[55]  Dan Maoz,et al.  Discovery of 90 Type Ia supernovae among 700 000 Sloan spectra: the Type Ia supernova rate versus galaxy mass and star formation rate at redshift ∼0.1 , 2012, 1209.0008.

[56]  J. Chiang,et al.  STUDIES IN ASTRONOMICAL TIME SERIES ANALYSIS. VI. BAYESIAN BLOCK REPRESENTATIONS , 2012, 1207.5578.

[57]  E. Pian,et al.  MULTI-WAVELENGTH OBSERVATIONS OF SUPERNOVA 2011ei: TIME-DEPENDENT CLASSIFICATION OF TYPE IIb AND Ib SUPERNOVAE AND IMPLICATIONS FOR THEIR PROGENITORS , 2012, 1207.2152.

[58]  J. Prieto,et al.  THE IMPACT OF METALLICITY ON THE RATE OF TYPE Ia SUPERNOVAE , 2011, 1106.3115.

[59]  J. Wright,et al.  ABSOLUTE-MAGNITUDE DISTRIBUTIONS OF SUPERNOVAE , 2014, 1403.5755.

[60]  S. E. Persson,et al.  TYPE Iax SUPERNOVAE: A NEW CLASS OF STELLAR EXPLOSION , 2012, 1212.2209.

[61]  S. Dong,et al.  The rate of WD-WD head-on collisions may be as high as the SNe Ia rate , 2012, 1211.4584.

[62]  Á. López-Sánchez,et al.  Integral field spectroscopy of a sample of nearby galaxies. II. Properties of the H II regions , 2012, 1208.1117.

[63]  C. Evans,et al.  Binary Interaction Dominates the Evolution of Massive Stars , 2012, Science.

[64]  R. Izzard,et al.  On the nature and detectability of Type Ib/c supernova progenitors , 2012, 1207.3683.

[65]  J. Brinchmann,et al.  THE ARECIBO LEGACY FAST ALFA SURVEY: THE GALAXY POPULATION DETECTED BY ALFALFA , 2012, 1207.0523.

[66]  N. Langer,et al.  Presupernova Evolution of Massive Single and Binary Stars , 2012, 1206.5443.

[67]  M. Turatto,et al.  Supernovae and their host galaxies. I. The SDSS DR8 database and statistics , 2012, 1206.5016.

[68]  E. Berger,et al.  A SPECTROSCOPIC STUDY OF TYPE Ibc SUPERNOVA HOST GALAXIES FROM UNTARGETED SURVEYS , 2012, 1206.2643.

[69]  O. Graur,et al.  No progenitor detected to M_V ~ -7 mag for Type-Ic SN 2012cw , 2012 .

[70]  J. Brinchmann,et al.  GAS, STARS, AND STAR FORMATION IN ALFALFA DWARF GALAXIES , 2012, 1203.3226.

[71]  Bradley E. Schaefer,et al.  An absence of ex-companion stars in the type Ia supernova remnant SNR 0509−67.5 , 2012, Nature.

[72]  J. C. Lee,et al.  A comparison between star formation rate diagnostics and rate of core collapse supernovae within 11 Mpc , 2011, 1111.1692.

[73]  A. Quirrenbach,et al.  CALIFA, the Calar Alto Legacy Integral Field Area survey : I. Survey presentation , 2011, 1111.0962.

[74]  R. Kirshner,et al.  CORE-COLLAPSE SUPERNOVAE AND HOST GALAXY STELLAR POPULATIONS , 2011, 1110.1377.

[75]  Peter E. Nugent,et al.  EARLY RADIO AND X-RAY OBSERVATIONS OF THE YOUNGEST NEARBY TYPE Ia SUPERNOVA PTF 11kly (SN 2011fe) , 2011, 1109.2912.

[76]  R. Nichol,et al.  THE SDSS-II SUPERNOVA SURVEY: PARAMETERIZING THE TYPE Ia SUPERNOVA RATE AS A FUNCTION OF HOST GALAXY PROPERTIES , 2011, 1108.4923.

[77]  Nathaniel R. Butler,et al.  Exclusion of a luminous red giant as a companion star to the progenitor of supernova SN 2011fe , 2011, Nature.

[78]  M. Modjaz Stellar Forensics with the Supernova-GRB Connection , 2011, 1105.5297.

[79]  M. Blanton,et al.  IMPROVED BACKGROUND SUBTRACTION FOR THE SLOAN DIGITAL SKY SURVEY IMAGES , 2011, 1105.1960.

[80]  S. Bamford,et al.  Galaxy and Mass Assembly (GAMA): the star formation rate dependence of the stellar initial mass function , 2011, 1104.2379.

[81]  S. S'anchez,et al.  PPAK Wide-field Integral Field Spectroscopy of NGC 628: II. Emission line abundance analysis , 2011, 1104.1136.

[82]  M. Fukugita,et al.  Supernovae in the Subaru Deep Field: the rate and delay-time distribution of Type Ia supernovae out to redshift 2 , 2011, 1102.0005.

[83]  Aniruddha R. Thakar,et al.  ERRATUM: “THE EIGHTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST DATA FROM SDSS-III” (2011, ApJS, 193, 29) , 2011 .

[84]  S. B. Cenko,et al.  THE FIRST SYSTEMATIC STUDY OF TYPE Ibc SUPERNOVA MULTI-BAND LIGHT CURVES , 2010, 1011.4959.

[85]  L. Kewley,et al.  PROGENITOR DIAGNOSTICS FOR STRIPPED CORE-COLLAPSE SUPERNOVAE: MEASURED METALLICITIES AT EXPLOSION SITES , 2010, 1007.0661.

[86]  Ryan Chornock,et al.  Observed Fractions of Core-Collapse Supernova Types and Initial Masses of their Single and Binary Progenitor Stars , 2010, 1006.3899.

[87]  D. Fox,et al.  CALTECH CORE-COLLAPSE PROJECT (CCCP) OBSERVATIONS OF TYPE IIn SUPERNOVAE: TYPICAL PROPERTIES AND IMPLICATIONS FOR THEIR PROGENITOR STARS , 2010, 1010.2689.

[88]  Ryan Chornock,et al.  Nearby supernova rates from the Lick Observatory Supernova Search – I. The methods and data base , 2010, 1006.4611.

[89]  Mohan Ganeshalingam,et al.  Nearby Supernova Rates from the Lick Observatory Supernova Search. II. The Observed Luminosity Functions and Fractions of Supernovae in a Complete Sample , 2010, 1006.4612.

[90]  Mohan Ganeshalingam,et al.  Nearby supernova rates from the Lick Observatory Supernova Search – III. The rate–size relation, and the rates as a function of galaxy Hubble type and colour , 2010, 1006.4613.

[91]  D. Maoz,et al.  THE SUPERNOVA DELAY TIME DISTRIBUTION IN GALAXY CLUSTERS AND IMPLICATIONS FOR TYPE-Ia PROGENITORS AND METAL ENRICHMENT , 2010, 1006.3576.

[92]  J. Anderson,et al.  TYPE Ibc SUPERNOVAE IN DISTURBED GALAXIES: EVIDENCE FOR A TOP-HEAVY INITIAL MASS FUNCTION , 2010, 1005.0511.

[93]  Richard Walters,et al.  CORE-COLLAPSE SUPERNOVAE FROM THE PALOMAR TRANSIENT FACTORY: INDICATIONS FOR A DIFFERENT POPULATION IN DWARF GALAXIES , 2010, 1004.0615.

[94]  S. Rappaport,et al.  Explosive common-envelope ejection: implications for gamma-ray bursts and low-mass black-hole binaries , 2010, 1004.0249.

[95]  D. Maoz,et al.  The supernova rate and delay time distribution in the Magellanic Clouds , 2010, 1003.3031.

[96]  F. Mannucci,et al.  Nearby supernova rates from the Lick Observatory Supernova Search - IV. A recovery method for the delay-time distribution , 2010, 1002.3056.

[97]  Donald W. Sweeney,et al.  LSST Science Book, Version 2.0 , 2009, 0912.0201.

[98]  Stephen J. Smartt,et al.  Progenitors of Core-Collapse Supernovae , 2009, 0908.0700.

[99]  D. Calzetti,et al.  THE SPITZER LOCAL VOLUME LEGACY: SURVEY DESCRIPTION AND INFRARED PHOTOMETRY , 2009, 0907.4722.

[100]  I. Paris,et al.  Relative frequencies of supernovae types: dependence on host galaxy magnitude, galactocentric radius, and local metallicity , 2009, 0905.3986.

[101]  F. Bresolin,et al.  ACCEPTED FOR PUBLICATION IN THE ASTROPHYSICAL JOURNAL 2009 JAN 8 Preprint typeset using LATEX style emulateapj v. 10/09/06 THE FLAT OXYGEN ABUNDANCE GRADIENT IN THE EXTENDED DISK OF M83 1 , 2009 .

[102]  Tokyo,et al.  Delay Time Distribution Measurement of Type Ia Supernovae by the Subaru/XMM-Newton Deep Survey and Implications for the Progenitor , 2008, 0804.0909.

[103]  F. Mannucci,et al.  A search for the progenitors of two Type Ia Supernovae in NGC 1316 , 2008, 0801.2898.

[104]  L. Kewley,et al.  Metallicity Calibrations and the Mass-Metallicity Relation for Star-forming Galaxies , 2008, 0801.1849.

[105]  John F. Beacom,et al.  Characterizing Supernova Progenitors via the Metallicities of their Host Galaxies, from Poor Dwarfs to Rich Spirals , 2007, 0707.0690.

[106]  Princeton,et al.  MEASURED METALLICITIES AT THE SITES OF NEARBY BROAD-LINED TYPE IC SUPERNOVAE AND IMPLICATIONS FOR THE SN-GRB CONNECTION , 2007 .

[107]  Christopher A. Tout,et al.  The Effect of Massive Binaries on Stellar Populations and Supernova Progenitors , 2007, Proceedings of the International Astronomical Union.

[108]  Benjamin D. Johnson,et al.  UV Star Formation Rates in the Local Universe , 2007, 0704.3611.

[109]  K. Knuth Optimal Data-Based Binning for Histograms , 2006, physics/0605197.

[110]  J. Neill,et al.  Rates and Properties of Type Ia Supernovae as a Function of Mass and Star Formation in Their Host Galaxies , 2006, astro-ph/0605455.

[111]  S. Jha,et al.  Late-Time Spectroscopy of SN 2002cx: The Prototype of a New Subclass of Type Ia Supernovae , 2006, astro-ph/0602250.

[112]  Alexander Heger,et al.  The Progenitor Stars of Gamma-Ray Bursts , 2005, astro-ph/0508175.

[113]  N. Langer,et al.  Evolution of rapidly rotating metal-poor massive stars towards gamma-ray bursts , 2005, astro-ph/0508242.

[114]  A. D. Koter,et al.  On the metallicity dependence of Wolf-Rayet winds , 2005, astro-ph/0507352.

[115]  Iap,et al.  The ages and metallicities of galaxies in the local universe , 2005, astro-ph/0506539.

[116]  F. Mannucci,et al.  The Supernova rate per unit mass , 2004, astro-ph/0411450.

[117]  S. Sakai,et al.  An Hα Imaging Survey of Galaxies in the Local 11 Mpc Volume , 2004, 0807.2035.

[118]  The SAI catalog of supernovae and radial distributions of supernovae of various types in galaxies , 2004 .

[119]  S. Smartt,et al.  The binary progenitor of Tycho Brahe's 1572 supernova , 2004, Nature.

[120]  J. Brinkmann,et al.  The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-forming Galaxies in the Sloan Digital Sky Survey , 2004, astro-ph/0405537.

[121]  M. Pettini,et al.  [O III] / [N II] as an abundance indicator at high redshift , 2004, astro-ph/0401128.

[122]  J. Brinkmann,et al.  The physical properties of star-forming galaxies in the low-redshift universe , 2003, astro-ph/0311060.

[123]  Bo Wang,et al.  The Progenitors of Type Ia Supernovae , 2012, 1204.1155.

[124]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[125]  A. Filippenko,et al.  Optical Spectra and Light Curves of Supernovae , 2003, astro-ph/0307138.

[126]  G. Meynet,et al.  Stellar evolution with rotation X. Wolf-Rayet star populations at solar metallicity , 2022 .

[127]  Chris L. Fryer,et al.  How Massive Single Stars End Their Life , 2002, astro-ph/0212469.

[128]  R. Nichol,et al.  Stellar masses and star formation histories for 105 galaxies from the Sloan Digital Sky Survey , 2002, astro-ph/0204055.

[129]  Bruno Leibundgut,et al.  From twilight to highlight : the physics of supernovae : proceedings of the ESO/MPA/MPE workshop held at Garching, Germany, 29-31 July 2002 , 2002 .

[130]  Thomas Matheson,et al.  Optical Spectroscopy of Type Ib/c Supernovae , 2001, astro-ph/0101119.

[131]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[132]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[133]  A. Filippenko,et al.  The Lick Observatory Supernova Search , 1999, astro-ph/9912336.

[134]  M. Turatto,et al.  The Asiago Supernova Catalogue - 10 years after , 1999, astro-ph/9908046.

[135]  G. Worthey,et al.  Publications of the Astronomical Society of the Pacific The Distribution Of Heavy Elements In Spiral And Elliptical Galaxies , 1999 .

[136]  J. Hjorth,et al.  The Supernova-Gamma-Ray Burst Connection , 1998, astro-ph/9806212.

[137]  S. Sagan,et al.  Interstellar Abundance Gradients in NGC 2403: Comparison to M33 , 1997 .

[138]  Alexei V. Filippenko,et al.  Optical spectra of supernovae , 1997 .

[139]  Lifan Wang,et al.  Supernovae and Their Host Galaxies , 1997 .

[140]  Mario Livio,et al.  On the Progenitors of Type IA Supernovae in Early-Type and Late-Type Galaxies , 1994 .

[141]  J. Huchra,et al.  H II regions and the abundance properties of spiral galaxies , 1994 .

[142]  L. Ho,et al.  The ``Type IIb'' Supernova 1993J in M81: A Close Relative of Type Ib Supernovae , 1993 .

[143]  M. Edmunds,et al.  The relation between abundance gradients and the physical properties of spiral galaxies , 1992 .

[144]  P. Podsiadlowski,et al.  Presupernova Evolution in Massive Interacting Binaries , 1992 .

[145]  S. Bergh,et al.  Galactic and extragalactic super-novae rates , 1991 .

[146]  S. Bergh THE FREQUENCY OF SN IA IN GALAXIES OF DIFFERING HUBBLE TYPE , 1990 .

[147]  Sidney van den Bergh,et al.  Revised supernova rates in Shapley-Ames galaxies , 1989 .

[148]  A. Filippenko,et al.  Supernova 1987K: Type II in Youth, Type Ib in Old Age , 1988 .

[149]  R. Webbink Double white dwarfs as progenitors of R Coronae Borealis stars and type I supernovae , 1984 .

[150]  A. V. Tutukov,et al.  Supernovae of type I as end products of the evolution of binaries with components of moderate initial mass (M< or approx. =9 M/sub sun/) , 1984 .

[151]  A. Oemler,et al.  Type I supernovae come from short-lived stars , 1979 .

[152]  J. C. Hayya,et al.  A Note on the Ratio of Two Normally Distributed Variables , 1975 .

[153]  J. Whelan,et al.  Binaries and Supernovae of Type I , 1973 .

[154]  Bohdan Paczynski,et al.  Evolutionary Processes in Close Binary Systems , 1971 .

[155]  D. Hinkley On the ratio of two correlated normal random variables , 1969 .

[156]  E. Salpeter The Luminosity function and stellar evolution , 1955 .