Neogene Carbonate Burial in the Pacific Ocean

[1] I have compiled CaCO3 mass accumulation rates (MARs) for the period 0–25 Ma for 144 Deep Sea Drilling Project and Ocean Drilling Program drill sites in the Pacific in order to investigate the history of CaCO3 burial in the world's largest ocean basin. This is the first synthesis of data since the beginning of the Ocean Drilling Program. Sedimentation rates, CaCO3 contents, and bulk density were estimated for 0.5 Myr time intervals from 0 to 14 Ma and for 1 Myr time intervals from 14 to 25 Ma using mostly data from Initial Reports volumes. There is surprisingly little coherence between CaCO3 MAR time series from different Pacific regions, although regional patterns exist. A transition from high to low CaCO3 MAR from 23–20 Ma is the only event common to the entire Pacific Ocean. This event is found worldwide. The most likely cause of lowered pelagic carbonate burial is a rising sea-level trend in the early Miocene. The central and eastern equatorial Pacific is the only region with adequate drill site coverage to study carbonate compensation depth (CCD) changes in detail for the entire Neogene. The latitude-dependent decrease in CaCO3 production away from the equator is an important defining factor of the regional CCD, which shallows away from the equatorial region. Examination of latitudinal transects across the equatorial region is a useful way to separate the effects of changes in carbonate production (“productivity”) from changes in bottom water chemistry (“dissolution”) upon carbonate burial.

[1]  E. Boyle,et al.  Lithium in foraminiferal shells: implications for high-temperature hydrothermal circulation fluxes and oceanic crustal generation rates , 1986 .

[2]  D. Lazarus,et al.  How synchronous are neogene marine plankton events , 1994 .

[3]  G. Kuhn,et al.  Calibration and application of marine sedimentary physical properties using a multi-sensor core logger , 1997 .

[4]  J. Edmond On the dissolution of carbonate and silicate in the deep ocean , 1974 .

[5]  N. Pisias,et al.  A new late Neogene time scale : Application to Leg 138 sites , 1995 .

[6]  T. R. Janecek,et al.  Proceedings of the Ocean Drilling Program, 199 Initial Reports , 2002 .

[7]  E. Boyle,et al.  Tertiary paleoceanic chemical variability: Unintended consequences of simple geochemical models , 1988 .

[8]  W. Berggren,et al.  Late Neogene chronology: New perspectives in high-resolution stratigraphy , 1995 .

[9]  B. Stauffer,et al.  Changes in the atmospheric CH4 gradient between Greenland and Antarctica during the Last Glacial and the transition to the Holocene , 2000 .

[10]  D. Roemmich,et al.  Large scale circulation of the North Pacific Ocean , 1989 .

[11]  M. Raymo,et al.  Tectonic forcing of late Cenozoic climate , 1992, Nature.

[12]  Roger N. Anderson,et al.  Elevation of ridges and evolution of the central Eastern Pacific. , 1971 .

[13]  S. Cande,et al.  Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic , 1995 .

[14]  D. Kent Orbital tuning of geomagnetic polarity time-scales , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[15]  R. Fairbanks,et al.  Early and Middle Miocene stable isotopes: Implications for Deepwater circulation and climate , 1992 .

[16]  M. Bender,et al.  Evolution of the Ratio of Strontium-87 to Strontium-86 in Seawater from Cretaceous to Present , 1986, Science.

[17]  Allan Cox,et al.  Relative Motions Between Oceanic and Continental Plates in the Pacific Basin , 1986 .

[18]  T. R. Janecek,et al.  Late Neogene sedimentation patterns in the eastern equatorial Pacific Ocean , 1995 .

[19]  K. Arrigo,et al.  A comparison between excess barium and barite as indicators of carbon export , 2003 .

[20]  Tjeerd H. van Andel,et al.  Mesozoic/cenozoic calcite compensation depth and the global distribution of calcareous sediments , 1975 .

[21]  A. Ravelo,et al.  Enhanced circulation during a warm period , 2000 .

[22]  N. Shackleton The carbon isotope record of the Cenozoic: history of organic carbon burial and of oxygen in the ocean and atmosphere , 1987, Geological Society, London, Special Publications.

[23]  D. Murray,et al.  The record of Late Pleistocene biogenic sedimentation in the eastern tropical Pacific Ocean , 1988 .

[24]  Larry A. Mayer,et al.  Extraction of high-resolution carbonate data for palaeoclimate reconstruction , 1991, Nature.

[25]  M. Lyle,et al.  Flux comparisons between sediments and sediment traps in the eastern tropical Pacific: Implications for atmospheric C02 variations during the Pleistocene1 , 1985 .

[26]  H. Okada,et al.  The distribution of oceanic coccolithophorids in the Pacific , 1973 .

[27]  R. B. Pearce,et al.  Origins and paleoceanographic significance of laminated diatom ooze from the eastern equatorial Pacific Ocean , 1995 .

[28]  D. DePaolo,et al.  High-Resolution Stratigraphy with Strontium Isotopes , 1985, Science.

[29]  R. Garrels,et al.  The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years , 1983 .

[30]  W. Hay,et al.  Estimates of Cenozoic Oceanic Sedimentation Rates , 1977, Science.

[31]  W. Berger,et al.  Neogene carbonate stratigraphy of Ontong Java Plateau (Western Equatorial Pacific): three unexpected findings , 1994 .

[32]  N. Shackleton,et al.  Constraints on astronomical parameters from the geological record for the last 25 Myr , 2000 .

[33]  James D. Wright,et al.  Unlocking the Ice House: Oligocene‐Miocene oxygen isotopes, eustasy, and margin erosion , 1991 .

[34]  R. Howie,et al.  An Introduction to the Rock-Forming Minerals , 1966 .

[35]  B. Wilkinson,et al.  Surface area control of shallow cratonic to deep marine carbonate accumulation , 1988 .

[36]  R. Collier,et al.  Export production of particles to the interior of the equatorial Pacific Ocean during the 1992 EqPac experiment , 1995 .

[37]  David Archer,et al.  What Controls Opal Preservation in Tropical Deep‐Sea Sediments? , 1993 .

[38]  S. Party,et al.  Ontong Java Plateau, Leg 130: Synopsis of major drilling results , 1991 .

[39]  D. Murray,et al.  Biogenic sedimentation at Site 847, eastern equatorial Pacific Ocean, during the past 3 m.y. , 1995 .

[40]  W. Berger,et al.  Distribution of carbonate in surface sediments of the Pacific Ocean , 1976 .

[41]  A. Ravelo,et al.  Pliocene carbonate accumulation along the California Margin , 1997 .

[42]  H. Elderfield,et al.  Cenozoic deep-Sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite , 2000, Science.

[43]  M. Lyle 3. RECONSTRUCTED GEOGRAPHIC POSITIONS AND WATER DEPTHS FOR LEG 167 DRILL SITES 1 , 1997 .

[44]  H. Elderfield Strontium isotope stratigraphy , 1986 .

[45]  R. Gordon,et al.  Current plate velocities relative to the hotspots incorporating the NUVEL-1 global plate motion model , 1990 .

[46]  R. Collier,et al.  Rates of recycling of biogenic components of settling particles in the ocean derived from sediment trap experiments , 1988 .

[47]  S. Cande,et al.  A new geomagnetic polarity time scale for the Late Cretaceous and Cenozoic , 1992 .

[48]  L. Talley,et al.  The geothermal heating of the abyssal subarctic Pacific Ocean , 1986 .

[49]  G. Haug,et al.  Evolution of northwest Pacific sedimentation patterns since 6 Ma (Site 882) , 1995 .

[50]  L. Kroenke,et al.  43. A PLATE TECTONIC RECONSTRUCTION OF THE SOUTHWEST PACIFIC, 0-100 Ma1 , 1993 .

[51]  Mitchell W Lyle,et al.  The late Miocene (11-8 Ma) eastern Pacific carbonate crash : Evidence for reorganization of deep-water circulation by the closure of the Panama Gateway , 1995 .

[52]  K. Kameo,et al.  The Caribbean carbonate crash at the middle to late Miocene transition : linkage to the establishment of the modern global ocean conveyor , 2001 .

[53]  T. H. Andel,et al.  Cenozoic history and paleoceanography of the central equatorial Pacific Ocean: A regional synthesis of Deep Sea Drilling Project data , 1975 .

[54]  R. M. Pytkowicz Chemical Solution of Calcium carbonate in Sea Water , 1969 .

[55]  W. Harry Mayne,et al.  Common Reflection Point Horizontal Data Stacking Techniques , 1962 .

[56]  R. Leckie,et al.  Neogene carbonate sedimentation on Ontong-Java-Plateau highlights and open questions , 1993 .

[57]  Frederik J. Hilgen,et al.  Extending the astronomical ( polarity) time scale into the Miocene , 1995 .

[58]  W. Berger,et al.  History of atmospheric CO2: constraints from the deep-sea record , 1988 .

[59]  J. Laskar,et al.  Astronomical calibration of Oligocene--Miocene time , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[60]  L. Talley,et al.  A tribute to Joseph L. Reid in recognition of 40 years of contributions to oceanography , 1991 .

[61]  Marie B. Knappenberger Sedimentation Rates and Pacific Plate Motion Calculated Using Seismic Cross-Sections of the Neogene Equatorial Sediment Bulge , 2000 .

[62]  R. Keir The dissolution kinetics of biogenic calcium carbonates in seawater , 1980 .

[63]  Nicholas Christie-Blick,et al.  Cenozoic global sea level, sequences, and the New Jersey Transect: Results From coastal plain and continental slope drilling , 1998 .

[64]  G. Lombari,et al.  Evolution of Pacific circulation in the Miocene: Radiolarian evidence from DSDP Site 289 , 1985 .