Activation of Silent Synapses by Rapid Activity-Dependent Synaptic Recruitment of AMPA Receptors

Many recent studies have shown that excitatory synapses can contain NMDA receptor responses in the absence of functional AMPA receptors and are therefore postsynaptically silent at resting membrane potentials. The activation of silent synapses via the rapid acquisition of AMPA receptor responses may be important in synaptic plasticity and neuronal development. Our recent immunocytochemical studies that used cultured hippocampal neurons have provided evidence for “morphological silent synapses” that physically contain NMDA receptors but no AMPA receptors. Here we show that the activation of NMDA receptors by spontaneous synaptic activity results in the rapid recruitment of AMPA receptors into these morphological silent synapses within minutes. In parallel, we find a significant increase in the frequency of AMPA receptor-mediated miniature EPSCs (mEPSCs). NMDA receptor activation also results in a mobilization of calcium/calmodulin (CaM) kinase II to synapses and an increase in the phosphorylation of surface AMPA receptors on the major CaM kinase II phosphorylation site. These results demonstrate that AMPA receptors can be modified and recruited rapidly to silent synapses via the activation of NMDA receptors by spontaneous synaptic activity.

[1]  R. Huganir,et al.  Interaction of the N-Ethylmaleimide–Sensitive Factor with AMPA Receptors , 1998, Neuron.

[2]  Peter Somogyi,et al.  Cell Type and Pathway Dependence of Synaptic AMPA Receptor Number and Variability in the Hippocampus , 1998, Neuron.

[3]  R. Nicoll,et al.  Activity differentially regulates the surface expression of synaptic AMPA and NMDA glutamate receptors. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[4]  S. Heinemann,et al.  Cloned glutamate receptors. , 1994, Annual review of neuroscience.

[5]  Alcino J. Silva,et al.  Autophosphorylation at Thr286 of the alpha calcium-calmodulin kinase II in LTP and learning. , 1998, Science.

[6]  M. Greenberg,et al.  Distinct roles for bFGF and NT-3 in the regulation of cortical neurogenesis , 1995, Neuron.

[7]  T. Bliss,et al.  A synaptic model of memory: long-term potentiation in the hippocampus , 1993, Nature.

[8]  R. Malinow,et al.  Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice , 1995, Nature.

[9]  G. Collingridge,et al.  Surface Expression of AMPA Receptors in Hippocampal Neurons Is Regulated by an NSF-Dependent Mechanism , 1999, Neuron.

[10]  G. Kerchner,et al.  AMPA receptor–PDZ interactions in facilitation of spinal sensory synapses , 1999, Nature Neuroscience.

[11]  T. Soderling,et al.  Ca2+/calmodulin-kinase II enhances channel conductance of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate type glutamate receptors. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[12]  G. Turrigiano AMPA Receptors Unbound Membrane Cycling and Synaptic Plasticity , 2000, Neuron.

[13]  T. Murphy,et al.  Spontaneous synchronous synaptic calcium transients in cultured cortical neurons , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[14]  R. Nicoll,et al.  A persistent postsynaptic modification mediates long-term potentiation in the hippocampus , 1988, Neuron.

[15]  T. Soderling,et al.  Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation. , 1997, Science.

[16]  J. Isaac,et al.  Evidence for silent synapses: Implications for the expression of LTP , 1995, Neuron.

[17]  Ann Marie Craig,et al.  Activity Regulates the Synaptic Localization of the NMDA Receptor in Hippocampal Neurons , 1997, Neuron.

[18]  R. Huganir,et al.  Characterization of Multiple Phosphorylation Sites on the AMPA Receptor GluR1 Subunit , 1996, Neuron.

[19]  R. Huganir,et al.  Characterization, Expression, and Distribution of GRIP Protein , 1999, Annals of the New York Academy of Sciences.

[20]  Alcino J. Silva,et al.  Deficient hippocampal long-term potentiation in alpha-calcium-calmodulin kinase II mutant mice. , 1992, Science.

[21]  T. Bliss,et al.  Synaptic plasticity in the hippocampus , 1979, Trends in Neurosciences.

[22]  Richard L. Huganir,et al.  Regulation of morphological postsynaptic silent synapses in developing hippocampal neurons , 1999, Nature Neuroscience.

[23]  W. Maxwell Cowan,et al.  Rat hippocampal neurons in dispersed cell culture , 1977, Brain Research.

[24]  M. Mayer,et al.  Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones , 1984, Nature.

[25]  T. Soderling,et al.  Postsynaptic protein phosphorylation and LTP , 2000, Trends in Neurosciences.

[26]  R. Huganir,et al.  Activity-Dependent Modulation of Synaptic AMPA Receptor Accumulation , 1998, Neuron.

[27]  R. Huganir,et al.  Organization and regulation of proteins at synapses. , 1999, Current opinion in cell biology.

[28]  P. Osten,et al.  The AMPA Receptor GluR2 C Terminus Can Mediate a Reversible, ATP-Dependent Interaction with NSF and α- and β-SNAPs , 1998, Neuron.

[29]  A. Konnerth,et al.  Long-term potentiation and functional synapse induction in developing hippocampus , 1996, Nature.

[30]  T. Soderling,et al.  Phosphorylation and regulation of glutamate receptors by calcium/calmodulin-dependent protein kinase II , 1993, Nature.

[31]  Alcino J. Silva,et al.  Impaired spatial learning in alpha-calcium-calmodulin kinase II mutant mice. , 1992, Science.

[32]  R. Malinow,et al.  Direct measurement of quantal changes underlying long-term potentiation in CA1 hippocampus , 1992, Neuron.

[33]  Robert C. Malenka,et al.  Synaptic plasticity in the hippocampus: LTP and LTD , 1994, Cell.

[34]  G. Lynch,et al.  Contributions of quisqualate and NMDA receptors to the induction and expression of LTP. , 1988, Science.

[35]  Richard L. Huganir,et al.  GRIP: a synaptic PDZ domain-containing protein that interacts with AMPA receptors , 1997, Nature.

[36]  西宗 敦史 NSF binding to GluR2 regulates synaptic transmission , 2000 .

[37]  C. Shatz,et al.  Synaptic Activity and the Construction of Cortical Circuits , 1996, Science.

[38]  K. Shen,et al.  Dynamic control of CaMKII translocation and localization in hippocampal neurons by NMDA receptor stimulation. , 1999, Science.

[39]  J. Partridge,et al.  Selective acquisition of AMPA receptors over postnatal development suggests a molecular basis for silent synapses , 1999, Nature Neuroscience.

[40]  R. Huganir,et al.  Control of GluR1 AMPA Receptor Function by cAMP-Dependent Protein Kinase , 2000, The Journal of Neuroscience.

[41]  R. Huganir,et al.  Redistribution and Stabilization of Cell Surface Glutamate Receptors during Synapse Formation , 1997, The Journal of Neuroscience.

[42]  M. Kennedy,et al.  Tetanic Stimulation Leads to Increased Accumulation of Ca2+/Calmodulin-Dependent Protein Kinase II via Dendritic Protein Synthesis in Hippocampal Neurons , 1999, The Journal of Neuroscience.

[43]  K M Harris,et al.  Visualization of the Distribution of Autophosphorylated Calcium/Calmodulin-Dependent Protein Kinase II after Tetanic Stimulation in the CA1 Area of the Hippocampus , 1997, The Journal of Neuroscience.

[44]  T. Soderling,et al.  Identification of the Ca2+/Calmodulin-dependent Protein Kinase II Regulatory Phosphorylation Site in the α-Amino-3-hydroxyl-5-methyl4-isoxazole-propionate-type Glutamate Receptor* , 1997, The Journal of Biological Chemistry.

[45]  M. Kennedy,et al.  Regional distribution of type II Ca2+/calmodulin-dependent protein kinase in rat brain , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[46]  Graham L. Collingridge,et al.  Temporally distinct pre- and post-synaptic mechanisms maintain long-term potentiation , 1989, Nature.

[47]  Niraj S. Desai,et al.  Activity-dependent scaling of quantal amplitude in neocortical neurons , 1998, Nature.

[48]  R. Malinow,et al.  Maturation of a Central Glutamatergic Synapse , 1996, Science.

[49]  Wei-Yang Lu,et al.  Activation of Synaptic NMDA Receptors Induces Membrane Insertion of New AMPA Receptors and LTP in Cultured Hippocampal Neurons , 2001, Neuron.

[50]  Mark von Zastrow,et al.  Rapid redistribution of glutamate receptors contributes to long-term depression in hippocampal cultures , 1999, Nature Neuroscience.

[51]  R. Nicoll,et al.  Rapid, Activation-Induced Redistribution of Ionotropic Glutamate Receptors in Cultured Hippocampal Neurons , 1999, The Journal of Neuroscience.

[52]  R. Malinow,et al.  Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. , 2000, Science.

[53]  L. Nowak,et al.  Magnesium gates glutamate-activated channels in mouse central neurones , 1984, Nature.

[54]  K. Svoboda,et al.  Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. , 1999, Science.

[55]  Andreas Lüthi,et al.  Modulation of AMPA receptor unitary conductance by synaptic activity , 1998, Nature.

[56]  Mark F Bear,et al.  NMDA Induces Long-Term Synaptic Depression and Dephosphorylation of the GluR1 Subunit of AMPA Receptors in Hippocampus , 1998, Neuron.

[57]  M. Bear,et al.  Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity , 2000, Nature.