Alfvénic Turbulence in the Extended Solar Corona: Kinetic Effects and Proton Heating

We present a model of magnetohydrodynamic (MHD) turbulence in the extended solar corona that contains the effects of collisionless dissipation and anisotropic particle heating. Recent observations have shown that preferential heating and acceleration of positive ions occur in the first few solar radii of the high-speed solar wind. Measurements made by the Ultraviolet Coronagraph Spectrometer aboard SOHO have revived interest in the idea that ions are energized by the dissipation of ion cyclotron resonant waves, but such high-frequency (i.e., small-wavelength) fluctuations have not been observed. A turbulent cascade is one possible way of generating small-scale fluctuations from a preexisting population of low-frequency MHD waves. We model this cascade as a combination of advection and diffusion in wavenumber space. The dominant spectral transfer occurs in the direction perpendicular to the background magnetic field. As expected from earlier models, this leads to a highly anisotropic fluctuation spectrum with a rapidly decaying tail in the parallel wavenumber direction. The wave power that decays to high enough frequencies to become ion cyclotron resonant depends on the relative strengths of advection and diffusion in the cascade. For the most realistic values of these parameters, however, there is insufficient power to heat protons and heavy ions. The dominant oblique fluctuations (with dispersion properties of kinetic Alfvén waves) undergo Landau damping, which implies strong parallel electron heating. We discuss the probable nonlinear evolution of the electron velocity distributions into parallel beams and discrete phase-space holes (similar to those seen in the terrestrial magnetosphere), which can possibly heat protons via stochastic interactions.

[1]  L. Milano,et al.  MHD turbulence and heating of the open field-line solar corona , 2003 .

[2]  M. Shay,et al.  Formation of Electron Holes and Particle Energization During Magnetic Reconnection , 2003, Science.

[3]  S. Spangler The Amplitude of Magnetohydrodynamic Turbulence in the Inner Solar Wind , 2002 .

[4]  R. Lin,et al.  Electrostatic Turbulence and Debye-Scale Structures Associated with Electron Thermalization at Collisionless Shocks , 2002 .

[5]  M. Sharp,et al.  Influence of subglacial drainage system evolution on glacier surface motion: Haut Glacier d'Arolla, Switzerland , 2002 .

[6]  L. Milano,et al.  Coronal Heating Distribution Due to Low-Frequency, Wave-driven Turbulence , 2002, astro-ph/0204347.

[7]  E. Marsch,et al.  Kinetic Results for Ions in the Solar Corona with Wave-Particle Interactions and Coulomb Collisions , 2002 .

[8]  M. Goossens,et al.  Nonlinear excitation of small-scale Alfvén waves by fast waves and plasma heating in the solar atmosphere , 2002 .

[9]  P. Isenberg The kinetic shell model of coronal heating and acceleration by ion cyclotron waves: 2. Inward and outward propagating waves , 2001 .

[10]  J. Hollweg,et al.  Electron heat flux instabilities in coronal holes: Implications for ion heating , 2001 .

[11]  S. Cranmer Ion cyclotron diffusion of velocity distributions in the extended , 2001 .

[12]  S. Markovskii Generation of Ion Cyclotron Waves in Coronal Holes by a Global Resonant Magnetohydrodynamic Mode , 2001 .

[13]  F. Mottez Instabilities and Formation of Coherent Structures , 2001 .

[14]  S. Habbal,et al.  Damping of fast and ion cyclotron oblique waves in the multi‐ion fast solar wind , 2001 .

[15]  A. Lazarian,et al.  Simulations of Magnetohydrodynamic Turbulence in a Strongly Magnetized Medium , 2001, astro-ph/0105235.

[16]  E. Marsch,et al.  On cyclotron wave heating and acceleration of solar wind ions in the outer corona , 2001 .

[17]  Hui Li,et al.  Solar wind magnetic fluctuation spectra: Dispersion versus damping , 2001 .

[18]  L. Milano,et al.  Wave-driven Turbulent Coronal Heating in Open Field Line Regions: Nonlinear Phenomenological Model , 2001 .

[19]  J. Maron,et al.  Simulations of Incompressible Magnetohydrodynamic Turbulence , 2000, astro-ph/0012491.

[20]  E. Marsch,et al.  Heating and acceleration of coronal ions interacting with plasma waves through cyclotron and Landau resonance , 2001 .

[21]  U. Feldman,et al.  Properties of Solar Polar Coronal Hole Plasmas Observed above the Limb , 2001 .

[22]  A. Ng,et al.  Random Scattering and Anisotropic Turbulence of Shear Alfvén Wave Packets , 2000 .

[23]  J. Mataix,et al.  The Influence of Dietary Fat Source (sunflower Oil or Olive Oil) on Ldl Composition and Serum Lipid Levels in Miniature Swine (sus Serofa) , 2022 .

[24]  T. Arber,et al.  A Method to Determine the Heating Mechanisms of the Solar Corona , 2000 .

[25]  R. Esser,et al.  Velocity Shear-induced Mode Conversion in Solar Wind and Streamer Plasmas , 2000 .

[26]  W. Matthaeus,et al.  MHD-driven Kinetic Dissipation in the Solar Wind and Corona , 2000 .

[27]  Shevchenko,et al.  Nonlinear cyclotron resonant wave-particle interaction in a nonuniform magnetic field , 2000, Physical review letters.

[28]  Lou‐Chuang Lee,et al.  Heating and Acceleration of Protons and Minor Ions by Fast Shocks in the Solar Corona , 2000 .

[29]  J. Hollweg Compressibility of ion cyclotron and whistler waves: Can radio measurements detect high‐frequency waves of solar origin in the corona? , 2000 .

[30]  B. Roberts,et al.  Waves and Oscillations in the Corona – (Invited Review) , 2000 .

[31]  S. Cranmer Ion Cyclotron Wave Dissipation in the Solar Corona: The Summed Effect of More than 2000 Ion Species , 2000 .

[32]  P. Kintner,et al.  On the perpendicular scale of electron phase‐space holes , 2000 .

[33]  Antonucci,et al.  Identification of the Coronal Sources of the Fast Solar Wind , 2000, The Astrophysical journal.

[34]  R. Ergun,et al.  Properties of fast solitary structures , 1999 .

[35]  J. Hollweg,et al.  Cyclotron resonance in coronal holes: 1. Heating and acceleration of protons, , 1999 .

[36]  H. Matsumoto,et al.  Interaction of Small Phase Density Holes , 1999 .

[37]  Charles W. Smith,et al.  Dissipation range dynamics: Kinetic Alfvn waves and the importance of , 1999 .

[38]  Xing Li Proton temperature anisotropy in the fast solar wind: A 16‐moment bi‐Maxwellian model , 1999 .

[39]  P. Dmitruk,et al.  Coronal Heating by Magnetohydrodynamic Turbulence Driven by Reflected Low-Frequency Waves , 1999 .

[40]  J. Hollweg,et al.  Kinetic Alfvén wave revisited , 1999 .

[41]  J. F. Mckenzie,et al.  Solar coronal heating by high-frequency dispersive Alfvén waves , 1999 .

[42]  J. Hollweg,et al.  Heating and cooling of protons by turbulence-driven ion cyclotron waves in the fast solar wind , 1999 .

[43]  S. Fineschi,et al.  An Empirical Model of a Polar Coronal Hole at Solar Minimum , 1999 .

[44]  A. Lazarian,et al.  Reconnection in a Weakly Stochastic Field , 1998, astro-ph/9811037.

[45]  E. Quataert,et al.  Turbulence and Particle Heating in Advection-dominated Accretion Flows , 1998, astro-ph/9803112.

[46]  S. Cranmer Non-Maxwellian Redistribution in Solar Coronal Lyα Emission , 1998 .

[47]  George B. Field,et al.  Spectroscopic Constraints on Models of Ion Cyclotron Resonance Heating in the Polar Solar Corona and High-Speed Solar Wind , 1998 .

[48]  M. Porkolab Kinetic theory of plasma waves, homogeneous plasmas , 1998 .

[49]  J. Chae,et al.  SUMER Measurements of Nonthermal Motions: Constraints on Coronal Heating Mechanisms , 1998 .

[50]  S. Bale,et al.  Bipolar electrostatic structures in the shock transition region: Evidence of electron phase space holes , 1998 .

[51]  F. Mozer,et al.  DEBYE-SCALE PLASMA STRUCTURES ASSOCIATED WITH MAGNETIC-FIELD-ALIGNED ELECTRIC FIELDS , 1998 .

[52]  Giampiero Naletto,et al.  UVCS/SOHO Empirical Determinations of Anisotropic Velocity Distributions in the Solar Corona , 1998 .

[53]  Marco Brambilla,et al.  Kinetic Theory of Plasma Waves: Homogeneous Plasmas , 1998 .

[54]  H. K. Wong,et al.  Observational constraints on the dynamics of the interplanetary magnetic field dissipation range , 1998 .

[55]  S. Fineschi,et al.  Plasma Properties in Coronal Holes Derived from Measurements of Minor Ion Spectral Lines and Polarized White Light Intensity , 1998 .

[56]  S. Fineschi,et al.  EUV Spectral Line Profiles in Polar Coronal Holes from 1.3 to 3.0 R☉ , 1998 .

[57]  E. Quataert Particle Heating by Alfvénic Turbulence in Hot Accretion Flows , 1997, astro-ph/9710127.

[58]  Giampiero Naletto,et al.  First Results from the Soho Ultraviolet Coronagraph Spectrometer , 1997 .

[59]  P. Goldreich,et al.  Magnetohydrodynamic Turbulence Revisited , 1997 .

[60]  E. Marsch,et al.  TWO-FLUID MODEL FOR HEATING OF THE SOLAR CORONA AND ACCELERATION OF THE SOLAR WIND BY HIGH-FREQUENCY ALFVÉN WAVES , 1997 .

[61]  S. Fineschi,et al.  First results from UVCS/SOHO , 1997 .

[62]  J. Harmon,et al.  Observations of field-aligned density microstructure near the Sun , 1997 .

[63]  Hiroshi Matsumoto,et al.  Nonlinear waves and chaos in space plasmas , 1997 .

[64]  W. Matthaeus,et al.  Evolution of turbulent magnetic fluctuation power with heliospheric distance , 1996 .

[65]  J. Kohl,et al.  Measurement of Hydrogen Velocity Distributions in the Extended Solar Corona , 1996 .

[66]  F. Gratton,et al.  Acceleration and heating of heavy ions by circularly polarized Alfvén waves , 1996 .

[67]  E. Olsen,et al.  Thermally Driven One-Fluid Electron-Proton Solar Wind: Eight-Moment Approximation , 1996 .

[68]  Liting Song Turbulence spectrum of kinetic Alfvén wave in the solar wind. (a) Landau damping , 1996 .

[69]  W. Matthaeus,et al.  Anisotropic three-dimensional MHD turbulence , 1996 .

[70]  James A. Miller,et al.  Stochastic Electron Acceleration by Cascading Fast Mode Waves in Impulsive Solar Flares , 1996 .

[71]  H. Rosenbauer,et al.  An extended structure-function model and its application to the analysis of solar wind intermittency properties , 1996 .

[72]  Multifractal scaling of the kinetic energy flux in solar wind turbulence , 1996 .

[73]  R. Lysak,et al.  On the kinetic dispersion relation for shear Alfvén waves , 1996 .

[74]  R. Esser,et al.  Coronal heating and plasma parameters at 1 AU , 1995 .

[75]  John W. Belcher,et al.  Radial evolution of the solar wind from IMP 8 to Voyager 2 , 1995 .

[76]  W. Feldman,et al.  Solar wind plasma electron parameters based on aligned observations by ICE and Ulysses , 1995 .

[77]  Minoru Tsutsui,et al.  Electrostatic solitary waves (ESW) in the magnetotail: BEN wave forms observed by GEOTAIL , 1994 .

[78]  S. Sridhar,et al.  Toward a theory of interstellar turbulence. 2. Strong Alfvenic turbulence , 1994 .

[79]  N. Omidi,et al.  Mode properties of low‐frequency waves: Kinetic theory versus Hall‐MHD , 1994 .

[80]  Claude Brezinski,et al.  Numerical recipes in Fortran (The art of scientific computing) : W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, Cambridge Univ. Press, Cambridge, 2nd ed., 1992. 963 pp., US$49.95, ISBN 0-521-43064-X.☆ , 1993 .

[81]  Joseph P. Dougherty,et al.  Waves in plasmas. , 1993 .

[82]  D. Aaron Roberts,et al.  Velocity shear generation of solar wind turbulence , 1992 .

[83]  J. Scudder Why all stars should possess circumstellar temperature inversions , 1992 .

[84]  William H. Press,et al.  Numerical recipes in FORTRAN (2nd ed.): the art of scientific computing , 1992 .

[85]  T. H. Stix Waves in plasmas , 1992 .

[86]  J. F. Mckenzie,et al.  The origin of high speed solar wind streams , 1992 .

[87]  S. Spangler The Dissipation of Magnetohydrodynamic Turbulence Responsible for Interstellar Scintillation and the Heating of the Interstellar Medium , 1991 .

[88]  Eugene N. Parker,et al.  Heating solar coronal holes , 1991 .

[89]  Eckart Marsch,et al.  Kinetic Physics of the Solar Wind Plasma , 1991 .

[90]  W. Matthaeus,et al.  Models of inertial range spectra of interplanetary magnetohydrodynamic turbulence , 1990 .

[91]  C. T. Dum Simulation studies of plasma waves in the electron foreshock: The generation of Langmuir waves by a gentle bump‐on‐tail electron distribution , 1990 .

[92]  G. P. M. Poppe,et al.  More efficient computation of the complex error function , 1990, TOMS.

[93]  P. Diamond,et al.  Clouds and holes: self-organization in compressible fluid and collisionless plasma turbulence , 1989 .

[94]  A. Hasegawa,et al.  Excitation of kinetic Alfven waves by resonant mode conversion and longitudinal heating of magnetized plasmas , 1989 .

[95]  William H. Press,et al.  Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .

[96]  John Ambrosiano,et al.  Test particle acceleration in turbulent reconnecting magnetic fields , 1988 .

[97]  C. Tu The damping of interplanetary Alfvénic fluctuations and the heating of the solar wind , 1988 .

[98]  S. Gary,et al.  Instabilities in Space and Laboratory Plasmas , 1987 .

[99]  A. Hasegawa,et al.  MACROSCALE PARTICLE SIMULATION OF KINETIC ALFVEN WAVES , 1987 .

[100]  I. Cairns The electron distribution function upstream from the Earth's bow shock , 1987 .

[101]  C. Tu A solar wind model with the power spectrum of Alfvénic fluctuations , 1987 .

[102]  M. Goldman,et al.  Microstructures in type III events in the solar wind , 1987 .

[103]  W. Matthaeus,et al.  Turbulent magnetic reconnection , 1986 .

[104]  J. V. Hollweg Transition region, corona, and solar wind in coronal holes , 1986 .

[105]  D. Melrose Instabilities in Space and Laboratory Plasmas: MHD instabilities , 1986 .

[106]  A. V. Ballegooijen,et al.  Cascade of magnetic energy as a mechanism of coronal heating , 1985 .

[107]  若谷 誠宏 A. A. Galeev and R. N. Sudan 編: Handbook of Plasma Physics, Vol. 1; Basic Plasma Physics, 1 and 2, North-Holland, Amsterdam and New York, 1983, 1984, 2vols., 24.5×17.5cm, 1: 51,000円, 2: 43,560円. , 1985 .

[108]  Z. Pu,et al.  The power spectrum of interplanetary Alfvénic fluctuations: Derivation of the governing equation and its solution , 1984 .

[109]  V. A. Turikov Electron Phase Space Holes as Localized BGK Solutions , 1984 .

[110]  P. Isenberg The ion cyclotron dispersion relation in a proton‐alpha solar wind , 1984 .

[111]  S. Schwartz,et al.  The radial evolution of a single solar wind plasma parcel , 1983 .

[112]  W. Matthaeus,et al.  Magnetohydrodynamic turbulence in the solar wind , 1999 .

[113]  John V. Shebalin,et al.  Anisotropy in MHD turbulence due to a mean magnetic field , 1983, Journal of Plasma Physics.

[114]  E. Marsch,et al.  Wave heating and acceleration of solar wind ions by cyclotron resonance , 1982 .

[115]  P. Isenberg,et al.  On the preferential acceleration and heating of solar wind heavy ions , 1982 .

[116]  T. H. Dupree Theory of phase‐space density holes , 1982 .

[117]  George L. Withbroe,et al.  Probing the solar wind acceleration region using spectroscopic techniques , 1982 .

[118]  D. Montgomery Major disruptions, inverse cascades, and the Strauss equations. [Current-carrying plasmas] , 1982 .

[119]  S. Schwartz,et al.  The source of proton anisotropy in the high‐speed solar wind , 1981 .

[120]  J. Hollweg,et al.  Ion-cyclotron heating and acceleration of solar wind minor ions , 1981 .

[121]  T. Tatsumi Theory of Homogeneous Turbulence , 1980 .

[122]  D. Eichler Particle acceleration in solar flares by cyclotron damping of cascading turbulence , 1979 .

[123]  U. Feldman,et al.  Measurements of extreme-ultraviolet emission-line profiles near the solar limb. , 1978 .

[124]  J. Hollweg,et al.  Some physical processes in the solar wind , 1978 .

[125]  J. Hollweg,et al.  Acceleration of solar wind He++3. Effects of resonant and nonresonant interactions with transverse waves , 1978 .

[126]  S. A. Jacques Momentum and energy transport by waves in the solar atmosphere and solar wind. , 1977 .

[127]  W. Feldman,et al.  Nonlinear alfven waves in high speed solar wind streams , 1977 .

[128]  A. Hasegawa Particle acceleration by MHD surface wave and formation of aurora , 1976 .

[129]  M. Brereton Classical Electrodynamics (2nd edn) , 1976 .

[130]  H. R. Strauss,et al.  Nonlinear, three‐dimensional magnetohydrodynamics of noncircular tokamaks , 1976 .

[131]  J. Hollweg,et al.  Alfven waves in a two-fluid model of the solar wind , 1973 .

[132]  J. Thompson Nonlinear Evolution of Collisionless Electron Beam‐Plasma Systems , 1971 .

[133]  T. Toichi Thermal properties of the solar wind plasma , 1971 .

[134]  R. Stéfant Alfven wave damping from finite gyroradius coupling to the ion acoustic mode , 1970 .

[135]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[136]  A. Barnes COLLISIONLESS HEATING OF THE SOLAR-WIND PLASMA. I. THEORY OF THE HEATING OF COLLISIONLESS PLASMA BY HYDROMAGNETIC WAVES. , 1968 .

[137]  Robert L. Carovillano,et al.  Physics of the magnetosphere , 1968 .

[138]  C. E. Leith,et al.  Diffusion Approximation to Inertial Energy Transfer in Isotropic Turbulence , 1967 .

[139]  Robert H. Kraichnan,et al.  Inertial‐Range Spectrum of Hydromagnetic Turbulence , 1965 .

[140]  Y. Pao Structure of Turbulent Velocity and Scalar Fields at Large Wavenumbers , 1965 .

[141]  Burton D. Fried,et al.  The Plasma Dispersion Function , 1961 .

[142]  I. Bernstein,et al.  Waves in a Plasma in a Magnetic Field , 1958 .

[143]  M. Kruskal,et al.  Exact Nonlinear Plasma Oscillations , 1957 .

[144]  D. E. Kerr Physics of Fully Ionized Gases. , 1956 .

[145]  G. Batchelor,et al.  The theory of homogeneous turbulence , 1954 .

[146]  A. Townsend On the fine-scale structure of turbulence , 1951, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[147]  S. Chandrasekhar Stochastic problems in Physics and Astronomy , 1943 .