A Fast and Scalable Joint Estimator for Learning Multiple Related Sparse Gaussian Graphical Models

Estimating multiple sparse Gaussian Graphical Models (sGGMs) jointly for many related tasks (large $K$) under a high-dimensional (large $p$) situation is an important task. Most previous studies for the joint estimation of multiple sGGMs rely on penalized log-likelihood estimators that involve expensive and difficult non-smooth optimizations. We propose a novel approach, FASJEM for \underline{fa}st and \underline{s}calable \underline{j}oint structure-\underline{e}stimation of \underline{m}ultiple sGGMs at a large scale. As the first study of joint sGGM using the Elementary Estimator framework, our work has three major contributions: (1) We solve FASJEM through an entry-wise manner which is parallelizable. (2) We choose a proximal algorithm to optimize FASJEM. This improves the computational efficiency from $O(Kp^3)$ to $O(Kp^2)$ and reduces the memory requirement from $O(Kp^2)$ to $O(K)$. (3) We theoretically prove that FASJEM achieves a consistent estimation with a convergence rate of $O(\log(Kp)/n_{tot})$. On several synthetic and four real-world datasets, FASJEM shows significant improvements over baselines on accuracy, computational complexity, and memory costs.

[1]  Pradeep Ravikumar,et al.  Elementary Estimators for Graphical Models , 2014, NIPS.

[2]  M. Yuan,et al.  Model selection and estimation in the Gaussian graphical model , 2007 .

[3]  Rich Caruana,et al.  Multitask Learning , 1998, Encyclopedia of Machine Learning and Data Mining.

[4]  M. Cotreau,et al.  Molecular classification of Crohn's disease and ulcerative colitis patients using transcriptional profiles in peripheral blood mononuclear cells. , 2006, The Journal of molecular diagnostics : JMD.

[5]  Christophe Ambroise,et al.  Inferring multiple graphical structures , 2009, Stat. Comput..

[6]  Bin Yu,et al.  High-dimensional covariance estimation by minimizing ℓ1-penalized log-determinant divergence , 2008, 0811.3628.

[7]  Satoshi Hara,et al.  Running heading title breaks the line Making Tree Ensembles Interpretable : A Bayesian Model Selection Approach – Supplementary Material – A EM Algorithm , 2022 .

[8]  I JordanMichael,et al.  Graphical Models, Exponential Families, and Variational Inference , 2008 .

[9]  Michael I. Jordan,et al.  Graphical Models, Exponential Families, and Variational Inference , 2008, Found. Trends Mach. Learn..

[10]  Yi Zhang,et al.  Prognostic gene expression signatures can be measured in tissues collected in RNAlater preservative. , 2006, The Journal of molecular diagnostics : JMD.

[11]  Patrick L. Combettes,et al.  Proximal Splitting Methods in Signal Processing , 2009, Fixed-Point Algorithms for Inverse Problems in Science and Engineering.

[12]  Patrick Danaher,et al.  The joint graphical lasso for inverse covariance estimation across multiple classes , 2011, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[13]  Michael I. Jordan Graphical Models , 2003 .

[14]  T. Cai,et al.  A Constrained ℓ1 Minimization Approach to Sparse Precision Matrix Estimation , 2011, 1102.2233.

[15]  Adam J. Rothman,et al.  Sparse permutation invariant covariance estimation , 2008, 0801.4837.

[16]  Jeff G. Schneider,et al.  Learning Multiple Tasks with a Sparse Matrix-Normal Penalty , 2010, NIPS.

[17]  P. Bickel,et al.  Covariance regularization by thresholding , 2009, 0901.3079.

[18]  Xiaotong Shen,et al.  Structural Pursuit Over Multiple Undirected Graphs , 2014, Journal of the American Statistical Association.

[19]  Karl W. Broman,et al.  A model selection approach for the identification of quantitative trait loci in experimental crosses , 2002 .

[20]  Kevin Skadron,et al.  Scalable parallel programming , 2008, 2008 IEEE Hot Chips 20 Symposium (HCS).

[21]  Rafael C. Jimenez,et al.  The MIntAct project—IntAct as a common curation platform for 11 molecular interaction databases , 2013, Nucleic Acids Res..

[22]  Qi Zhang,et al.  \(\ell_{1, p}\)-Norm Regularization: Error Bounds and Convergence Rate Analysis of First-Order Methods , 2015, ICML.

[23]  Pradeep Ravikumar,et al.  Elementary Estimators for Sparse Covariance Matrices and other Structured Moments , 2014, ICML.

[24]  F. Zhan,et al.  The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. , 2003, The New England journal of medicine.

[25]  Pradeep Ravikumar,et al.  Dirty Statistical Models , 2013, NIPS.

[26]  E. Levina,et al.  Joint estimation of multiple graphical models. , 2011, Biometrika.

[27]  Dimitris Samaras,et al.  Multi-Task Learning of Gaussian Graphical Models , 2010, ICML.

[28]  T. Ideker,et al.  Differential network biology , 2012, Molecular systems biology.

[29]  N. L. Johnson,et al.  Multivariate Analysis , 1958, Nature.

[30]  Sandhya Rani,et al.  Human Protein Reference Database—2009 update , 2008, Nucleic Acids Res..

[31]  Adam J. Rothman,et al.  Generalized Thresholding of Large Covariance Matrices , 2009 .

[32]  Pradeep Ravikumar,et al.  Elementary Estimators for High-Dimensional Linear Regression , 2014, ICML.

[33]  Yue Joseph Wang,et al.  Learning Structural Changes of Gaussian Graphical Models in Controlled Experiments , 2010, UAI.

[34]  Su-In Lee,et al.  Node-based learning of multiple Gaussian graphical models , 2013, J. Mach. Learn. Res..

[35]  A. Brookes,et al.  GWAS Central: a comprehensive resource for the comparison and interrogation of genome-wide association studies , 2013, European Journal of Human Genetics.

[36]  Yuhong Yang,et al.  An Asymptotic Property of Model Selection Criteria , 1998, IEEE Trans. Inf. Theory.

[37]  ENCODEConsortium,et al.  An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.

[38]  Pradeep Ravikumar,et al.  Sparse inverse covariance matrix estimation using quadratic approximation , 2011, MLSLP.

[39]  Clément Farabet,et al.  Torch7: A Matlab-like Environment for Machine Learning , 2011, NIPS 2011.

[40]  Martin J. Wainwright,et al.  A unified framework for high-dimensional analysis of $M$-estimators with decomposable regularizers , 2009, NIPS.

[41]  Alexandre d'Aspremont,et al.  Model Selection Through Sparse Max Likelihood Estimation Model Selection Through Sparse Maximum Likelihood Estimation for Multivariate Gaussian or Binary Data , 2022 .

[42]  F. Javiergirón CONSISTENCY OF OBJECTIVE BAYES FACTORS AS THE MODEL DIMENSION GROWS , 2010 .