Studying (non-planar) road networks through an algorithmic lens
暂无分享,去创建一个
[1] John H. Reif,et al. A Dynamic Separator Algorithm , 1993, WADS.
[2] David Eppstein,et al. Setting parameters by example , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).
[3] Thomas Willhalm,et al. Combining Speed-Up Techniques for Shortest-Path Computations , 2004, WEA.
[4] Clifford Stein,et al. Introduction to Algorithms, 2nd edition. , 2001 .
[5] R. K. Shyamasundar,et al. Introduction to algorithms , 1996 .
[6] Prosenjit Bose,et al. On the stabbing number of a random Delaunay triangulation , 2007, Comput. Geom..
[7] Rajeev Raman,et al. Recent results on the single-source shortest paths problem , 1997, SIGA.
[8] S. Vavasis,et al. Geometric Separators for Finite-Element Meshes , 1998, SIAM J. Sci. Comput..
[9] Michael T. Goodrich,et al. Planar Separators and Parallel Polygon Triangulation , 1995, J. Comput. Syst. Sci..
[10] Gary L. Miller,et al. Finding Small Simple Cycle Separators for 2-Connected Planar Graphs , 1986, J. Comput. Syst. Sci..
[11] Nancy M. Amato,et al. A Randomized Algorithm for Triangulating a Simple Polygon in Linear Time , 2001, Discret. Comput. Geom..
[12] Andrew V. Goldberg,et al. Scaling algorithms for the shortest paths problem , 1995, SODA '93.
[13] Jeannette M. Wing. An introduction to computer science for non-majors using principles of computation , 2007, SIGCSE.
[14] Robert E. Tarjan,et al. A data structure for dynamic trees , 1981, STOC '81.
[15] Ulrich Meyer,et al. Single-source shortest-paths on arbitrary directed graphs in linear average-case time , 2001, SODA '01.
[16] Andrew V. Goldberg,et al. Computing the shortest path: A search meets graph theory , 2005, SODA '05.
[17] Robert E. Tarjan,et al. Fibonacci heaps and their uses in improved network optimization algorithms , 1984, JACM.
[18] Franz Aurenhammer,et al. Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.
[19] David Eppstein,et al. A Deterministic Linear Time Algorithm for Geometric Separators and its Applications , 1995, Fundam. Informaticae.
[20] Peter Sanders,et al. Highway Hierarchies Hasten Exact Shortest Path Queries , 2005, ESA.
[21] Bernard Chazelle,et al. Could Your iPod Be Holding the Greatest Mystery in Modern Science? , 2006 .
[22] Michael Batty,et al. Fractal Cities: A Geometry of Form and Function , 1996 .
[23] Philip N. Klein,et al. Faster Shortest-Path Algorithms for Planar Graphs , 1997, J. Comput. Syst. Sci..
[24] Bernard Chazelle. Triangulating a simple polygon in linear time , 1991, Discret. Comput. Geom..
[25] Gary L. Miller,et al. Separators for sphere-packings and nearest neighbor graphs , 1997, JACM.
[26] Pavol Návrat. Review of "Algorithm design: foundations, analysis and internet examples" by Michael T. Goodrich and Roberto Tamassia. John Wiley & Sons, Inc. 2001. , 2004, SIGA.
[27] Anne Condon,et al. RNA Molecules: Glimpses Through an Algorithmic Lens , 2006, LATIN.
[28] M. Erwig. The graph Voronoi diagram with applications , 2000 .
[29] Shang-Hua Teng,et al. Disk packings and planar separators , 1996, SCG '96.
[30] G. A. Klunder,et al. The shortest path problem on large-scale real-road networks , 2006 .
[31] F. Benjamin Zhan,et al. Shortest Path Algorithms: An Evaluation Using Real Road Networks , 1998, Transp. Sci..
[32] Kurt Mehlhorn,et al. A Faster Approximation Algorithm for the Steiner Problem in Graphs , 1988, Inf. Process. Lett..
[33] Michael T. Goodrich,et al. Algorithm Design: Foundations, Analysis, and Internet Examples , 2001 .
[34] Mikkel Thorup,et al. Undirected single-source shortest paths with positive integer weights in linear time , 1999, JACM.
[35] Bernard Chazelle,et al. Is the thrill gone? , 2005, CACM.
[36] Franz Aurenhammer,et al. Voronoi Diagrams , 2000, Handbook of Computational Geometry.
[37] R. Tarjan,et al. A Separator Theorem for Planar Graphs , 1977 .
[38] Jeffrey Scott Vitter,et al. Shortest paths in euclidean graphs , 2005, Algorithmica.
[39] Bojan Mohar,et al. A polynomial time circle packing algorithm , 1993, Discret. Math..