Asymptotics for Sums of Random Variables with Local Subexponential Behaviour

We study distributions F on [0,∞) such that for some T ≤ ∞, F*2(x, x+T] ∼ 2F(x, x+T]. The case T = ∞ corresponds to F being subexponential, and our analysis shows that the properties for T < ∞ are, in fact, very similar to this classical case. A parallel theory is developed in the presence of densities. Applications are given to random walks, the key renewal theorem, compound Poisson process and Bellman–Harris branching processes.

[1]  P. Ney,et al.  Degeneracy Properties of Subcritical Branching Processes , 1973 .

[2]  N. Veraverbeke Asymptotic behaviour of Wiener-Hopf factors of a random walk , 1977 .

[3]  D. Korshunov On distribution tail of the maximum of a random walk , 1997 .

[4]  V. Chistyakov A Theorem on Sums of Independent Positive Random Variables and Its Applications to Branching Random Processes , 1964 .

[5]  T. Rolski Stochastic Processes for Insurance and Finance , 1999 .

[6]  Kenneth Lange,et al.  Applied Probability , 2003 .

[7]  ON THE LOCAL BEHAVIOUR OF LADDER HEIGHT DISTRIBUTIONS , 1994 .

[8]  H. Callaert,et al.  A Lemma on regular variation of a transient renewal function , 1972 .

[9]  Upendra Dave,et al.  Applied Probability and Queues , 1987 .

[10]  P. Embrechts,et al.  Estimates for the probability of ruin with special emphasis on the possibility of large claims , 1982 .

[11]  Søren Asmussen,et al.  A Probabilistic Look at the Wiener-Hopf Equation , 1998, SIAM Rev..

[12]  J. Cohen SOME RESULTS ON REGULAR VARIATION FOR DISTRIBUTIONS IN QUEUEING AND FLUCTUATION THEORY , 1973 .

[13]  Jozef L. Teugels,et al.  The class of subexponential distributions , 1975 .

[14]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[15]  P. A. P. Moran,et al.  An introduction to probability theory , 1968 .

[16]  T. E. Harris,et al.  The Theory of Branching Processes. , 1963 .

[17]  Tomasz Rolski,et al.  Stochastic Processes for Insurance and Finance , 2001 .

[18]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[19]  P. Ney,et al.  Functions of probability measures , 1973 .

[20]  Charles M. Goldie,et al.  On convolution tails , 1982 .

[21]  Aleksandr Alekseevich Borovkov,et al.  Stochastic processes in queueing theory , 1976 .

[22]  Søren Asmussen,et al.  Ruin probabilities , 2001, Advanced series on statistical science and applied probability.

[23]  Claudia Klüppelberg,et al.  Subexponential distributions and characterizations of related classes , 1989 .

[24]  Stan Zachary,et al.  The maximum on a random time interval of a random walk with long-tailed increments and negative drift , 2003 .

[25]  Charles M. Goldie,et al.  Subexponentiality and infinite divisibility , 1979 .

[26]  Charles M. Grinstead,et al.  Introduction to probability , 1999, Statistics for the Behavioural Sciences.

[27]  A. W. Kemp,et al.  Applied Probability and Queues , 1989 .

[28]  J. Corcoran Modelling Extremal Events for Insurance and Finance , 2002 .