Memetic algorithms beat evolutionary algorithms on the class of hurdle problems

Memetic algorithms are popular hybrid search heuristics that integrate local search into the search process of an evolutionary algorithm in order to combine the advantages of rapid exploitation and global optimisation. However, these algorithms are not well understood and the field is lacking a solid theoretical foundation that explains when and why memetic algorithms are effective. We provide a rigorous runtime analysis of a simple memetic algorithm, the (1+1) MA, on the Hurdle problem class, a landscape class of tuneable difficulty that shows a "big valley structure", a characteristic feature of many hard problems from combinatorial optimisation. The only parameter of this class is the hurdle width w, which describes the length of fitness valleys that have to be overcome. We show that the (1+1) EA requires Θ(nw) expected function evaluations to find the optimum, whereas the (1+1) MA with best-improvement and first-improvement local search can find the optimum in Θ(n2 + n3/w2) and Θ(n3/w2) function evaluations, respectively. Surprisingly, while increasing the hurdle width makes the problem harder for evolutionary algorithms, the problem becomes easier for memetic algorithms. We discuss how these findings can explain and illustrate the success of memetic algorithms for problems with big valley structures.

[1]  Michael J. Dinneen,et al.  Runtime analysis to compare best-improvement and first-improvement in memetic algorithms , 2014, GECCO.

[2]  Anne Auger,et al.  Theory of Randomized Search Heuristics: Foundations and Recent Developments , 2011, Theory of Randomized Search Heuristics.

[3]  Pietro Simone Oliveto,et al.  On the runtime analysis of generalised selection hyper-heuristics for pseudo-boolean optimisation , 2017, GECCO.

[4]  William E. Hart,et al.  Memetic Evolutionary Algorithms , 2005 .

[5]  Adam Prügel-Bennett,et al.  When a genetic algorithm outperforms hill-climbing , 2004, Theor. Comput. Sci..

[6]  Bernd Freisleben,et al.  Memetic Algorithms and the Fitness Landscape of the Graph Bi-Partitioning Problem , 1998, PPSN.

[7]  Gabriela Ochoa,et al.  Deconstructing the Big Valley Search Space Hypothesis , 2016, EvoCOP.

[8]  Qingfu Zhang,et al.  EB-GLS: an improved guided local search based on the big valley structure , 2017, Memetic Comput..

[9]  Michael J. Dinneen,et al.  On the analysis of a (1+1) adaptive memetic algorithm , 2013, 2013 IEEE Workshop on Memetic Computing (MC).

[10]  Russ Bubley,et al.  Randomized algorithms , 1995, CSUR.

[11]  Christian Gießen,et al.  Hybridizing evolutionary algorithms with opportunistic local search , 2013, GECCO '13.

[12]  Dirk Sudholt,et al.  Towards a Runtime Comparison of Natural and Artificial Evolution , 2015, Algorithmica.

[13]  Pablo Moscato,et al.  Handbook of Memetic Algorithms , 2011, Studies in Computational Intelligence.

[14]  Dirk Sudholt Local Search in Evolutionary Algorithms: The Impact of the Local Search Frequency , 2006, ISAAC.

[15]  Ronald L. Rivest,et al.  Introduction to Algorithms, third edition , 2009 .

[16]  Xin-She Yang,et al.  Introduction to Algorithms , 2021, Nature-Inspired Optimization Algorithms.

[17]  Michael J. Dinneen,et al.  Runtime analysis comparison of two fitness functions on a memetic algorithm for the Clique Problem , 2014, 2014 IEEE Congress on Evolutionary Computation (CEC).

[18]  Dirk Sudholt,et al.  Analysis of an Iterated Local Search Algorithm for Vertex Coloring , 2010, ISAAC.

[19]  C. R. Reeves,et al.  Landscapes, operators and heuristic search , 1999, Ann. Oper. Res..

[20]  Dirk Sudholt,et al.  Hybridizing Evolutionary Algorithms with Variable-Depth Search to Overcome Local Optima , 2011, Algorithmica.

[21]  Dirk Sudholt,et al.  The impact of parametrization in memetic evolutionary algorithms , 2009, Theor. Comput. Sci..

[22]  Helena Ramalhinho Dias Lourenço,et al.  Iterated Local Search , 2001, Handbook of Metaheuristics.

[23]  Carsten Witt,et al.  Analysis of an iterated local search algorithm for vertex cover in sparse random graphs , 2012, Theor. Comput. Sci..

[24]  Carlos Cotta,et al.  Memetic algorithms and memetic computing optimization: A literature review , 2012, Swarm Evol. Comput..

[25]  Dirk Sudholt,et al.  On the analysis of the (1+1) memetic algorithm , 2006, GECCO.

[26]  Doug Hains,et al.  Revisiting the big valley search space structure in the TSP , 2011, J. Oper. Res. Soc..

[27]  Per Kristian Lehre,et al.  Runtime analysis of selection hyper-heuristics with classical learning mechanisms , 2014, 2014 IEEE Congress on Evolutionary Computation (CEC).