Relationship between structural and optical properties of colloidal CdxZn1−xS quantum dots in gelatin

Abstract. Aqueous synthesis of mixed cadmium and zinc sulfides colloidal quantum dots (QDs) has been successfully realized. Colloidal CdxZn1−xS QDs are formed in a cubic crystal lattice with particle size of ∼2  nm. The blueshift of optical absorption spectra from 420 to 295 nm and recombination photoluminescence from 646 to 483 nm with increasing zinc content in QDs was observed. Optimum photoluminescence intensity occurs for QDs with Cd0.3Zn0.7S composition. With increasing zinc content up to Cd0.3Zn0.7S, luminescence intensity increases and decreases when zinc content is larger than 0.7. The increase in photoluminescence intensity is explained by the increase in the number of point defects, such as complexes of interstitial metal atoms–metal vacancies [Mei−VMe]. Such complexes occur due to displacement of the metal atom at the center of the elementary tetrahedron due to substitution of one of the four sulfur atoms by an impurity atom, such as an oxygen atom.

[1]  S. Pokutnyi Excition states in semiconductor quantum dots in the modified effective mass approximation , 2007 .

[2]  Yiqing Chen,et al.  Synthesis and Characterization of ZnS, CdS, and Composition-Tunable ZnxCd1−xS Alloyed Nanocrystals via a Mix-Solvothermal Route , 2009 .

[3]  Walter J. Riker A Review of J , 2010 .

[4]  M. R. Kim,et al.  Composition Variation and Thermal Treatment of ZnxCd1−xS Alloy Nanoparticles to Exhibit Controlled and Efficient Luminescence , 2010 .

[5]  A. I. Ekimov,et al.  Quantum size effect in semiconductor microcrystals , 1985 .

[6]  Yingchun Zhu,et al.  Synthesis and characterization of ternary chalcogenide ZnCdS 1D nanostructures , 2008 .

[7]  R. Friesner,et al.  Quantum confinement effects in semiconductor clusters , 1991 .

[8]  M. G. Ivanov,et al.  Spectra and decay kinetics of radiative recombination in CdS microcrystals , 1990 .

[9]  F. Williams,et al.  Activator Systems in Zinc Sulfide Phosphors , 1956 .

[10]  M. Pospíšil,et al.  Precipitation, stabilization and molecular modeling of ZnS nanoparticles in the presence of cetyltrimethylammonium bromide. , 2012, Journal of colloid and interface science.

[11]  E. Gavrishchuk,et al.  A study of luminescence centers related to copper and oxygen in ZnSe , 2001 .

[12]  M. Nakayama,et al.  Optical properties of ZnS–CdS alloy quantum dots prepared by a colloidal method , 2005 .

[13]  D. G. Thomas,et al.  Kinetics of Radiative Recombination at Randomly Distributed Donors and Acceptors , 1965 .

[14]  S. Wageh,et al.  Growth and optical properties of colloidal ZnS nanoparticles , 2003 .

[15]  Mohsen Mohsennia,et al.  Low driving voltage in polymer light-emitting diodes with CdS nanoparticles as an electron transport layer , 2015 .

[16]  A. Ekimov Optical Properties of Semiconductor Quantum Dots in Glass Matrix , 1991 .

[17]  J. T. Mullins,et al.  Growth and Optical Properties of CdS:(Cd, Zn)S Strained Layer Superlattices , 1991 .

[18]  M. Pileni,et al.  Solid Solution of Cd y Zn 1 - y S Nanosized Particles: Photophysical Properties , 1998 .

[19]  Y. Kayanuma,et al.  Quantum-size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape. , 1988, Physical review. B, Condensed matter.

[20]  J. Misiewicz,et al.  Stark effect in semiconductor quantum dots , 2004 .

[21]  G. Döhler The Kinetics of Donor–Acceptor Transitions in ZnS Type Phosphors , 1971 .

[22]  J. Lakowicz,et al.  Luminescence Spectral Properties of CdS Nanoparticles. , 1999, The journal of physical chemistry. B.

[23]  Igor L. Medintz,et al.  Quantum dot bioconjugates for imaging, labelling and sensing , 2005, Nature materials.

[24]  Yongfang Li,et al.  Composition‐ and Shape‐Controlled Synthesis and Optical Properties of ZnxCd1–xS Alloyed Nanocrystals , 2005 .

[25]  J. Langford,et al.  Scherrer after sixty years: a survey and some new results in the determination of crystallite size , 1978 .

[26]  M. Cardona,et al.  Optical Properties and Band Structure of Wurtzite-Type Crystals and Rutile , 1965 .

[27]  M. Pileni,et al.  Solid Solution of CdyZn1-yS Nanosized Particles: Photophysical Properties , 1997 .

[28]  Dai Fukumura,et al.  InAs(ZnCdS) quantum dots optimized for biological imaging in the near-infrared. , 2009, Journal of the American Chemical Society.

[29]  R. Banerjee,et al.  Effect of the size-induced structural transformation on the band gap in CdS nanoparticles , 2000 .

[30]  R. Nitschke,et al.  Quantum dots versus organic dyes as fluorescent labels , 2008, Nature Methods.

[31]  Xiao Ya Hu,et al.  Controllable Synthesis and Optical Properties of Zn-Doped CdS Nanorods from Single-Source Molecular Precursors , 2007 .

[32]  Wolfgang Knoll,et al.  Alloyed Zn(x)Cd(1-x)S nanocrystals with highly narrow luminescence spectral width. , 2003, Journal of the American Chemical Society.

[33]  K. Kreher,et al.  Fundamentals of Semiconductors – Physics and Materials Properties , 1997 .

[34]  Shuming Nie,et al.  Semiconductor nanocrystals: structure, properties, and band gap engineering. , 2010, Accounts of chemical research.

[35]  C. Sorensen,et al.  Structural phase behavior in II–VI semiconductor nanoparticles , 1995 .

[36]  Junhao Zhang,et al.  Controllable synthesis of water-soluble luminescent CdxZn1−xS nanocrystals , 2010 .

[37]  Exciton binding energy in semiconductor quantum dots , 2010 .

[38]  Adrienne D. Stiff-Roberts,et al.  Quantum-dot infrared photodetectors: a review , 2009 .

[39]  A. Eychmüller,et al.  Fluorescence mechanism of highly monodisperse Q-sized CdS colloids , 1991 .

[40]  S. Wuister,et al.  Synthesis and luminescence of CdS quantum dots capped with a silica precursor , 2003 .

[41]  A. Manabe,et al.  Infrared Lattice Reflection Spectra of II-VI Compounds , 1967 .

[42]  Yixing Yang,et al.  High‐Efficient Deep‐Blue Light‐Emitting Diodes by Using High Quality ZnxCd1‐xS/ZnS Core/Shell Quantum Dots , 2014 .

[43]  S. Qadri,et al.  SIZE-INDUCED TRANSITION-TEMPERATURE REDUCTION IN NANOPARTICLES OF ZNS , 1999 .

[44]  D. Balding,et al.  HLA Sequence Polymorphism and the Origin of Humans , 2006 .

[45]  E. Davis,et al.  Physical properties of mixed single crystals of CdS and ZnS , 1967 .

[46]  M. S. El-shall,et al.  Room-Temperature Synthesis and Characterization of Nanocrystalline CdS, ZnS, and CdxZn1-xS , 2002 .

[47]  M. R. Rahimi Tabar,et al.  Controlled nucleation and growth of CdS nanoparticles by turbulent dispersion. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[48]  Lih Y. Lin,et al.  Quantum dot nanophotonics - from waveguiding to integration , 2009 .

[49]  S. N. Sahu,et al.  Photoluminescence of CdS nanocrystals: effect of ageing , 1999 .

[50]  A. Patra,et al.  Lattice Strain Controls the Carrier Relaxation Dynamics in CdxZn1–xS Alloy Quantum Dots , 2012 .

[51]  Herron,et al.  Quantum size effects on the exciton energy of CdS clusters. , 1990, Physical review. B, Condensed matter.

[52]  A. Joly,et al.  Temperature and pressure dependences of the Mn2+ and donor-acceptor emissions in ZnS : Mn2+ nanoparticles , 2002 .

[53]  A. Irajizad,et al.  Facile synthesis of gradient alloyed ZnxCd1−xS nanocrystals using a microwave-assisted method , 2014 .

[54]  Shui-Tong Lee,et al.  Wavelength‐Controlled Lasing in ZnxCd1–xS Single‐Crystal Nanoribbons , 2005, Advanced materials.

[55]  H. Hillhouse,et al.  Solar cells from colloidal nanocrystals: Fundamentals, materials, devices, and economics , 2009 .

[56]  Ludmila Otilia Cinteza,et al.  Quantum dots in biomedical applications: advances and challenges , 2010 .

[57]  S. Nie,et al.  Luminescent quantum dots for multiplexed biological detection and imaging. , 2002, Current opinion in biotechnology.

[58]  Lannoo,et al.  Calculation of the band gap for small CdS and ZnS crystallites. , 1989, Physical review. B, Condensed matter.

[59]  Igor Nabiev,et al.  Molecular beacons involving highly luminescent colloidal quantum dots , 2012 .

[60]  Louis E. Brus,et al.  Electron-electron and electron-hole interactions in small semiconductor crystallites : The size dependence of the lowest excited electronic state , 1984 .