Impact ionization in (100), (110), and (111) oriented InP avalanche photodiodes

The impact ionization process in the 〈100〉, 〈110〉, and 〈111〉 crystallographic directions in InP has been investigated by analysis of photomultiplication and multiplication noise data from InP avalanche photodiodes. This is the first report of such measurements for (110)‐oriented InP and the first consistent investigation of impact ionization in the three principal crystallographic directions. Our measurements indicate that, unlike the reports for GaAs, no significant orientation dependence of the impact ionization coefficients exists in InP. Momentum‐randomizing collisions with phonons, which result in intervalley transfer of energetic electrons, are believed to be the reason for the lack of anisotropy in the electron impact ionization coefficients.

[1]  S. Groves,et al.  TP-C14 ionization coefficients of electrons and holes in InP , 1979, IEEE Transactions on Electron Devices.

[2]  F. Capasso,et al.  The graded bandgap multilayer avalanche photodiode: A new low-noise detector , 1982, IEEE Electron Device Letters.

[3]  Federico Capasso,et al.  Enhancement of electron impact ionization in a superlattice: A new avalanche photodiode with a large ionization rate ratio , 1982 .

[4]  F. Capasso,et al.  Hot electron dynamics in GaAs avalanche devices: Competition between ballistic behavior and intervalley scattering , 1979 .

[5]  Katsuhiko Nishida,et al.  InGaAsP heterostructure avalanche photodiodes with high avalanche gain , 1979 .

[6]  G. E. Stillman,et al.  Electron and hole impact ionization coefficients in InP determined by photomultiplication measurements , 1982 .

[7]  Thomas P. Pearsall,et al.  The band structure dependence of impact ionization by hot carriers in semiconductors: GaAs , 1978 .

[8]  G. Kelner,et al.  Material‐Selective Chemical Etching in the System InGaAsP / InP , 1979 .

[9]  James R. Chelikowsky,et al.  Nonlocal pseudopotential calculations for the electronic structure of eleven diamond and zinc-blende semiconductors , 1976 .

[10]  R. Mcintyre Multiplication noise in uniform avalanche diodes , 1966 .

[11]  O. Hildebrand,et al.  Ga 1-x Al x Sb avalanche photodiodes: Resonant impact ionization with very high ratio of ionization coefficients , 1981 .

[12]  Osamu Mikami,et al.  Crystal orientation dependence of ionization rates in germanium , 1980 .

[13]  R. Mcintyre The distribution of gains in uniformly multiplying avalanche photodiodes: Theory , 1972 .

[14]  S. R. Forrest,et al.  A high gain In0.53Ga0.47As/InP avalanche photodiode with no tunneling leakage current , 1981 .

[15]  A. Choudhury,et al.  Ionization coefficients measured in abrupt InP junctions , 1980 .

[16]  C. R. Crowell,et al.  Impact ionization by electrons and holes in InP , 1980 .

[17]  R. B. Emmons,et al.  Avalanche‐Photodiode Frequency Response , 1967 .

[18]  V. Diadiuk,et al.  Avalanche multiplication and noise characteristics of low‐dark‐current GaInAsP/InP avalanche photodetectors , 1980 .

[19]  T. Pearsall Threshold energies for impact ionization by electrons and holes in InP , 1979 .

[20]  Karl Hess,et al.  Band-structure-dependent transport and impact ionization in GaAs , 1981 .

[21]  V. Diadiuk,et al.  Diffusion length of moles in n‐InP , 1983 .