The fundamental theorem of asset pricing under transaction costs

This paper proves the fundamental theorem of asset pricing with transaction costs, when bid and ask prices follow locally bounded càdlàg (right-continuous, left-limited) processes.The robust no free lunch with vanishing risk condition (RNFLVR) for simple strategies is equivalent to the existence of a strictly consistent price system (SCPS). This result relies on a new notion of admissibility, which reflects future liquidation opportunities. The RNFLVR condition implies that admissible strategies are predictable processes of finite variation.The Appendix develops an extension of the familiar Stieltjes integral for càdlàg integrands and finite-variation integrators, which is central to modelling transaction costs with discontinuous prices.

[1]  E. Jouini,et al.  Martingales and Arbitrage in Securities Markets with Transaction Costs , 1995 .

[2]  A. Zygmund,et al.  Measure and integral : an introduction to real analysis , 1977 .

[4]  F. Delbaen,et al.  The fundamental theorem of asset pricing for unbounded stochastic processes , 1998 .

[5]  Walter Schachermayer,et al.  The Mathematics of Arbitrage , 2006 .

[6]  David M. Kreps,et al.  Martingales and arbitrage in multiperiod securities markets , 1979 .

[7]  A. Shiryaev,et al.  Limit Theorems for Stochastic Processes , 1987 .

[8]  W. Schachermayer The Fundamental Theorem of Asset Pricing under Proportional Transaction Costs in Finite Discrete Time , 2004 .

[9]  Yan Jia-An,et al.  Caractérisation d’une classe d’ensembles convexes de $L^1$ ou $H^1$ , 1980 .

[10]  A. Cherny General Arbitrage Pricing Model: II – Transaction Costs , 2007 .

[11]  Y. Kabanov,et al.  The Harrison-Pliska arbitrage pricing theorem under transaction costs , 2001 .

[12]  Robert C. Dalang,et al.  Equivalent martingale measures and no-arbitrage in stochastic securities market models , 1990 .

[13]  Walter Schachermayer,et al.  A super-replication theorem in Kabanov’s model of transaction costs , 2006, Finance Stochastics.

[14]  L. I. Gal’chuk Stochastic Integrals with Respect to Optional Semimartingales and Random Measures , 1985 .

[15]  David M. Kreps Arbitrage and equilibrium in economies with infinitely many commodities , 1981 .

[16]  É. Lenglart Tribus de meyer et theorie des processus , 1980 .

[17]  C. Stricker,et al.  Séparation d'une sur-et d'une sousmartingale par une martingale , 1998 .

[18]  F. Delbaen,et al.  A general version of the fundamental theorem of asset pricing , 1994 .

[19]  Y. Kabanov,et al.  Hedging under Transaction Costs in Currency Markets: a Continuous‐Time Model , 2002 .

[20]  D. Kramkov Optional decomposition of supermartingales and hedging contingent claims in incomplete security markets , 1996 .

[21]  G. Heal,et al.  Arbitrage and Equilibrium in Economies with Infinitely Many Securities and Commodities , 1992 .

[22]  W. Schachermayer MARTINGALE MEASURES FOR DISCRETE‐TIME PROCESSES WITH INFINITE HORIZON , 1994 .

[23]  Miklós Rásonyi,et al.  No-arbitrage criteria for financial markets with efficient friction , 2002, Finance Stochastics.

[24]  J. Harrison,et al.  Martingales and stochastic integrals in the theory of continuous trading , 1981 .

[25]  W. Schachermayer,et al.  The fundamental theorem of asset pricing for continuous processes under small transaction costs , 2010 .

[26]  Yuri Kabanov,et al.  Hedging and liquidation under transaction costs in currency markets , 1999, Finance Stochastics.

[27]  Yuri Kabanov,et al.  A teacher's note on no-arbitrage criteria , 2001 .

[28]  W. Rudin Principles of mathematical analysis , 1964 .

[29]  P. Meyer,et al.  Probabilities and potential C , 1978 .

[30]  S. Ross Return, Risk and Arbitrage , 1975 .

[31]  P. Guasoni Optimal investment with transaction costs and without semimartingales , 2002 .

[32]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.