Spectral properties of liquid crystal photonic bandgap fibres with splay-aligned mesogens

Through a detailed electromagnetic analysis we investigate the characteristics of liquid crystal infiltrated photonic crystal Fibers guiding by the Photonic Bandgap effect. The analysis, carried out using the Finite Element Method and including also material dispersion effects, puts into evidence particular spectral features related to the so-called splay alignment of the molecules constituting the liquid crystal, the so called mesogens. Control of these features is of use in the design of new devices for sensing or telecommunication applications.

[1]  V. Rakocevic,et al.  Birefringence study of photonic crystal fibers by using the full-vectorial finite element method , 2006 .

[2]  Anders Bjarklev,et al.  Optical devices based on liquid crystal photonic bandgap fibres. , 2003, Optics express.

[3]  Giovanni Tartarini,et al.  Experimental and theoretical analysis of leaky extraordinary modes in negative uniaxial channel waveguides , 2005 .

[4]  K. Saitoh,et al.  Single-polarization single-mode photonic crystal fibers , 2003, IEEE Photonics Technology Letters.

[5]  Shin-Tson Wu,et al.  Extended Cauchy equations for the refractive indices of liquid crystals , 2004 .

[6]  Jun Li,et al.  All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers. , 2004, Optics express.

[7]  A. Bjarklev,et al.  Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber , 2005, IEEE Photonics Technology Letters.

[8]  Shin-Tson Wu,et al.  Temperature effect on liquid crystal refractive indices , 2004 .

[9]  K. Thyagarajan,et al.  Introduction to fiber optics: An Introduction to Fiber Optics , 1998 .

[10]  B. Eggleton,et al.  Application of an ARROW model for designing tunable photonic devices. , 2004, Optics express.

[11]  Brian Joseph Mangan,et al.  Photonic Crystal Fibres: An Endless Variety , 2001 .

[12]  Edward Nowinowski-Kruszelnicki,et al.  Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres , 2006 .

[13]  E. Kriezis,et al.  Tunable highly birefringent bandgap-guiding liquid-crystal microstructured fibers , 2006, Journal of Lightwave Technology.

[14]  Yilong Lu,et al.  Vectorial finite element modelling of 2D leaky waveguides , 1995 .

[15]  Ilaria Cristiani,et al.  Nonlinear characterization and modeling of periodically poled lithium niobate waveguides for 1,5-μm-band cascaded wavelength conversion , 2001 .

[16]  A. Bjarklev,et al.  Photonic Crystal Fibers: A New Class of Optical Waveguides , 1999 .

[17]  Anders Bjarklev,et al.  Photonic crystal fibres , 2003 .

[18]  P. Bassi,et al.  Polarization Properties of Elliptical-Hole Liquid Crystal Photonic Bandgap Fibers , 2007, Journal of Lightwave Technology.

[19]  Anders Bjarklev,et al.  Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers. , 2005, Optics express.

[20]  Giovanni Tartarini,et al.  Efficient β-formulation for the FEM analysis of leaky modes in general anisotropic channel waveguides , 2000 .

[21]  Masanori Koshiba,et al.  Full vectorial finite element formalism for lossy anisotropic waveguides , 1989 .