AN EXPLICIT SOLUTION OF INFORMATION GEODESIC EQUATIONS FOR THE MULTIVARIATE NORMAL MODEL

[1]  J. M. Oller,et al.  RAO ’ S DISTANCE FOR NEGATIVE MULTINOMIAL DISTRIBUTIONS , 1985 .

[2]  Jacob Burbea,et al.  THE INFORMATION METRIC FOR UNIVARIATE LINEAR ELLIPTIC MODELS , 1988 .

[3]  Karl Pearson,et al.  ON THE COEFFICIENT OF RACIAL LIKENESS , 1926 .

[4]  C. Atkinson Rao's distance measure , 1981 .

[5]  C. R. Rao,et al.  Entropy differential metric, distance and divergence measures in probability spaces: A unified approach , 1982 .

[6]  J. Burbea Informative Geometry of Probability Spaces , 1984 .

[7]  R. Shepard The analysis of proximities: Multidimensional scaling with an unknown distance function. II , 1962 .

[8]  C. R. Rao,et al.  The Utilization of Multiple Measurements in Problems of Biological Classification , 1948 .

[9]  Calyampudi R. Rao,et al.  Further contributions to the theory of generalized inverse of matrices and its applications , 1971 .

[10]  C. R. Rao,et al.  Information and the Accuracy Attainable in the Estimation of Statistical Parameters , 1992 .

[11]  Karl Pearson F.R.S. LIII. On lines and planes of closest fit to systems of points in space , 1901 .

[12]  Ann F. S. Mitchell Statistical Manifolds of univariate elliptic distributions , 1988 .

[13]  L. Skovgaard A Riemannian geometry of the multivariate normal model , 1984 .

[14]  R. Shepard The analysis of proximities: Multidimensional scaling with an unknown distance function. I. , 1962 .

[15]  Josep M. Oller,et al.  A distance between multivariate normal distributions based in an embedding into the Siegel group , 1990 .

[16]  P. Mahalanobis On the generalized distance in statistics , 1936 .