A unified approach for handling convection terms in finite volumes and mimetic discretization methods for elliptic problems
暂无分享,去创建一个
[1] Jérôme Droniou,et al. Finite-volume schemes for noncoercive elliptic problems with Neumann boundary conditions , 2008 .
[2] T. F. Russell,et al. Finite element and finite difference methods for continuous flows in porous media. , 1800 .
[3] H. Gummel,et al. Large-signal analysis of a silicon Read diode oscillator , 1969 .
[4] Clint Dawson,et al. Upwind‐mixed methods for transport equations , 1999 .
[5] Jean E. Roberts,et al. Mixed and hybrid finite element methods , 1987 .
[6] Jean E. Roberts,et al. Global estimates for mixed methods for second order elliptic equations , 1985 .
[7] Olof Runborg. Finite difference methods for the diffusion equation , 2003 .
[8] J. Maître,et al. Connection between finite volume and mixed finite element methods , 1996 .
[9] Ivar Aavatsmark,et al. Discretization on Unstructured Grids For Inhomogeneous, Anisotropic Media. Part II: Discussion And Numerical Results , 1998, SIAM J. Sci. Comput..
[10] Gianmarco Manzini,et al. A Higher-Order Formulation of the Mimetic Finite Difference Method , 2008, SIAM J. Sci. Comput..
[11] Jean E. Roberts,et al. Upstream weighting and mixed finite elements in the simulation of miscible displacements , 1985 .
[12] Lourenço Beirão da Veiga,et al. A residual based error estimator for the Mimetic Finite Difference method , 2007, Numerische Mathematik.
[13] Mary F. Wheeler,et al. A Multipoint Flux Mixed Finite Element Method , 2006, SIAM J. Numer. Anal..
[14] Todd Arbogast,et al. Enhanced Cell-Centered Finite Differences for Elliptic Equations on General Geometry , 1998, SIAM J. Sci. Comput..
[15] M. Shashkov,et al. The mimetic finite difference method on polygonal meshes for diffusion-type problems , 2004 .
[16] Béatrice Rivière,et al. Discontinuous Galerkin methods for solving elliptic and parabolic equations - theory and implementation , 2008, Frontiers in applied mathematics.
[17] Thierry Gallouët,et al. Finite volume method , 2010, Scholarpedia.
[18] J. David Moulton,et al. Convergence of mimetic finite difference discretizations of the diffusion equation , 2001, J. Num. Math..
[19] Ivar Aavatsmark,et al. Discretization on Unstructured Grids for Inhomogeneous, Anisotropic Media. Part I: Derivation of the Methods , 1998, SIAM J. Sci. Comput..
[20] Gianmarco Manzini,et al. Convergence Analysis of the Mimetic Finite Difference Method for Elliptic Problems , 2009, SIAM J. Numer. Anal..
[21] Gianmarco Manzini,et al. Flux reconstruction and solution post-processing in mimetic finite difference methods , 2008 .
[22] G. Chavent,et al. From mixed finite elements to finite volumes for elliptic PDEs in two and three dimensions , 2004 .
[23] D. Arnold,et al. Mixed and nonconforming finite element methods : implementation, postprocessing and error estimates , 1985 .
[24] R. Eymard,et al. Discretisation of heterogeneous and anisotropic diffusion problems on general non-conforming meshes. SUSHI: a scheme using stabilisation and hybrid interfaces , 2008, 0801.1430.
[25] Gianmarco Manzini,et al. Mimetic finite difference method for the Stokes problem on polygonal meshes , 2009, J. Comput. Phys..
[26] Gianmarco Manzini,et al. The Discrete Duality Finite Volume Method for Convection-diffusion Problems , 2010, SIAM J. Numer. Anal..
[27] F. Brezzi,et al. A FAMILY OF MIMETIC FINITE DIFFERENCE METHODS ON POLYGONAL AND POLYHEDRAL MESHES , 2005 .
[28] J. Jaffré. Decentrage et elements finis mixtes pour les equations de diffusion-convection , 1984 .
[29] Robert Eymard,et al. A mixed finite volume scheme for anisotropic diffusion problems on any grid , 2006, Numerische Mathematik.
[30] Gianmarco Manzini,et al. A finite volume method for advection-diffusion problems in convection-dominated regimes , 2008 .
[31] Konstantin Lipnikov,et al. Convergence of the Mimetic Finite Difference Method for Diffusion Problems on Polyhedral Meshes , 2005, SIAM J. Numer. Anal..
[32] Enrico Bertolazzi,et al. Algorithm 817: P2MESH: generic object-oriented interface between 2-D unstructured meshes and FEM/FVM-based PDE solvers , 2002, TOMS.
[33] Gianmarco Manzini,et al. Convergence analysis of the high-order mimetic finite difference method , 2009, Numerische Mathematik.
[34] Jérôme Droniou,et al. Convergence Analysis of a Mixed Finite Volume Scheme for an Elliptic-Parabolic System Modeling Miscible Fluid Flows in Porous Media , 2007, SIAM J. Numer. Anal..
[35] Robert Eymard,et al. Study of the mixed finite volume method for Stokes and Navier‐Stokes equations , 2009 .
[36] M. Vohralík. Equivalence between lowest-order mixed finite element and multi-point finite volume methods on simplicial meshes , 2006 .
[37] Gianmarco Manzini,et al. An a posteriori error estimator for the mimetic finite difference approximation of elliptic problems , 2008 .
[38] Ivan Yotov,et al. Local flux mimetic finite difference methods , 2009, Numerische Mathematik.
[39] M. Shashkov,et al. A new discretization methodology for diffusion problems on generalized polyhedral meshes , 2007 .
[40] Gert Lube,et al. A STABILIZED SCHEME FOR THE LAGRANGE MULTIPLIER METHOD FOR ADVECTION-DIFFUSION EQUATIONS , 2004 .
[41] E. Bertolazzi,et al. A CELL-CENTERED SECOND-ORDER ACCURATE FINITE VOLUME METHOD FOR CONVECTION–DIFFUSION PROBLEMS ON UNSTRUCTURED MESHES , 2004 .
[42] Douglas N. Arnold,et al. Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..
[43] Annalisa Buffa,et al. Mimetic finite differences for elliptic problems , 2009 .
[44] R. Eymard,et al. A UNIFIED APPROACH TO MIMETIC FINITE DIFFERENCE, HYBRID FINITE VOLUME AND MIXED FINITE VOLUME METHODS , 2008, 0812.2097.
[45] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[46] Mikhail Shashkov,et al. Mimetic finite difference methods for diffusion equations on non-orthogonal AMR meshes , 2003 .
[47] A. Ern,et al. A discontinuous Galerkin method with weighted averages for advection–diffusion equations with locally small and anisotropic diffusivity , 2008 .