A unified approach for handling convection terms in finite volumes and mimetic discretization methods for elliptic problems

We study the numerical approximation to the solution of the steady convection-diffusion equation. The diffusion term is discretized by using the hybrid mimetic method (HMM), which is the unified formula- tion for the hybrid finite-volume (FV) method, the mixed FV method and the mimetic finite-difference method recently proposed in Droniou et al. (2010, Math. Models Methods Appl. Sci., 20, 265-295). In such a setting we discuss several techniques to discretize the convection term that are mainly adapted from the literature on FV or FV schemes. For this family of schemes we provide a full proof of conver- gence under very general regularity conditions of the solution field and derive an error estimate when the scalar solution is in H 2 (Ω). Finally, we compare the performance of these schemes on a set of test cases selected from the literature in order to document the accuracy of the numerical approximation in both diffusion- and convection-dominated regimes. Moreover, we numerically investigate the behaviour of these methods in the approximation of solutions with boundary layers or internal regions with strong gradients.

[1]  Jérôme Droniou,et al.  Finite-volume schemes for noncoercive elliptic problems with Neumann boundary conditions , 2008 .

[2]  T. F. Russell,et al.  Finite element and finite difference methods for continuous flows in porous media. , 1800 .

[3]  H. Gummel,et al.  Large-signal analysis of a silicon Read diode oscillator , 1969 .

[4]  Clint Dawson,et al.  Upwind‐mixed methods for transport equations , 1999 .

[5]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[6]  Jean E. Roberts,et al.  Global estimates for mixed methods for second order elliptic equations , 1985 .

[7]  Olof Runborg Finite difference methods for the diffusion equation , 2003 .

[8]  J. Maître,et al.  Connection between finite volume and mixed finite element methods , 1996 .

[9]  Ivar Aavatsmark,et al.  Discretization on Unstructured Grids For Inhomogeneous, Anisotropic Media. Part II: Discussion And Numerical Results , 1998, SIAM J. Sci. Comput..

[10]  Gianmarco Manzini,et al.  A Higher-Order Formulation of the Mimetic Finite Difference Method , 2008, SIAM J. Sci. Comput..

[11]  Jean E. Roberts,et al.  Upstream weighting and mixed finite elements in the simulation of miscible displacements , 1985 .

[12]  Lourenço Beirão da Veiga,et al.  A residual based error estimator for the Mimetic Finite Difference method , 2007, Numerische Mathematik.

[13]  Mary F. Wheeler,et al.  A Multipoint Flux Mixed Finite Element Method , 2006, SIAM J. Numer. Anal..

[14]  Todd Arbogast,et al.  Enhanced Cell-Centered Finite Differences for Elliptic Equations on General Geometry , 1998, SIAM J. Sci. Comput..

[15]  M. Shashkov,et al.  The mimetic finite difference method on polygonal meshes for diffusion-type problems , 2004 .

[16]  Béatrice Rivière,et al.  Discontinuous Galerkin methods for solving elliptic and parabolic equations - theory and implementation , 2008, Frontiers in applied mathematics.

[17]  Thierry Gallouët,et al.  Finite volume method , 2010, Scholarpedia.

[18]  J. David Moulton,et al.  Convergence of mimetic finite difference discretizations of the diffusion equation , 2001, J. Num. Math..

[19]  Ivar Aavatsmark,et al.  Discretization on Unstructured Grids for Inhomogeneous, Anisotropic Media. Part I: Derivation of the Methods , 1998, SIAM J. Sci. Comput..

[20]  Gianmarco Manzini,et al.  Convergence Analysis of the Mimetic Finite Difference Method for Elliptic Problems , 2009, SIAM J. Numer. Anal..

[21]  Gianmarco Manzini,et al.  Flux reconstruction and solution post-processing in mimetic finite difference methods , 2008 .

[22]  G. Chavent,et al.  From mixed finite elements to finite volumes for elliptic PDEs in two and three dimensions , 2004 .

[23]  D. Arnold,et al.  Mixed and nonconforming finite element methods : implementation, postprocessing and error estimates , 1985 .

[24]  R. Eymard,et al.  Discretisation of heterogeneous and anisotropic diffusion problems on general non-conforming meshes. SUSHI: a scheme using stabilisation and hybrid interfaces , 2008, 0801.1430.

[25]  Gianmarco Manzini,et al.  Mimetic finite difference method for the Stokes problem on polygonal meshes , 2009, J. Comput. Phys..

[26]  Gianmarco Manzini,et al.  The Discrete Duality Finite Volume Method for Convection-diffusion Problems , 2010, SIAM J. Numer. Anal..

[27]  F. Brezzi,et al.  A FAMILY OF MIMETIC FINITE DIFFERENCE METHODS ON POLYGONAL AND POLYHEDRAL MESHES , 2005 .

[28]  J. Jaffré Decentrage et elements finis mixtes pour les equations de diffusion-convection , 1984 .

[29]  Robert Eymard,et al.  A mixed finite volume scheme for anisotropic diffusion problems on any grid , 2006, Numerische Mathematik.

[30]  Gianmarco Manzini,et al.  A finite volume method for advection-diffusion problems in convection-dominated regimes , 2008 .

[31]  Konstantin Lipnikov,et al.  Convergence of the Mimetic Finite Difference Method for Diffusion Problems on Polyhedral Meshes , 2005, SIAM J. Numer. Anal..

[32]  Enrico Bertolazzi,et al.  Algorithm 817: P2MESH: generic object-oriented interface between 2-D unstructured meshes and FEM/FVM-based PDE solvers , 2002, TOMS.

[33]  Gianmarco Manzini,et al.  Convergence analysis of the high-order mimetic finite difference method , 2009, Numerische Mathematik.

[34]  Jérôme Droniou,et al.  Convergence Analysis of a Mixed Finite Volume Scheme for an Elliptic-Parabolic System Modeling Miscible Fluid Flows in Porous Media , 2007, SIAM J. Numer. Anal..

[35]  Robert Eymard,et al.  Study of the mixed finite volume method for Stokes and Navier‐Stokes equations , 2009 .

[36]  M. Vohralík Equivalence between lowest-order mixed finite element and multi-point finite volume methods on simplicial meshes , 2006 .

[37]  Gianmarco Manzini,et al.  An a posteriori error estimator for the mimetic finite difference approximation of elliptic problems , 2008 .

[38]  Ivan Yotov,et al.  Local flux mimetic finite difference methods , 2009, Numerische Mathematik.

[39]  M. Shashkov,et al.  A new discretization methodology for diffusion problems on generalized polyhedral meshes , 2007 .

[40]  Gert Lube,et al.  A STABILIZED SCHEME FOR THE LAGRANGE MULTIPLIER METHOD FOR ADVECTION-DIFFUSION EQUATIONS , 2004 .

[41]  E. Bertolazzi,et al.  A CELL-CENTERED SECOND-ORDER ACCURATE FINITE VOLUME METHOD FOR CONVECTION–DIFFUSION PROBLEMS ON UNSTRUCTURED MESHES , 2004 .

[42]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[43]  Annalisa Buffa,et al.  Mimetic finite differences for elliptic problems , 2009 .

[44]  R. Eymard,et al.  A UNIFIED APPROACH TO MIMETIC FINITE DIFFERENCE, HYBRID FINITE VOLUME AND MIXED FINITE VOLUME METHODS , 2008, 0812.2097.

[45]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[46]  Mikhail Shashkov,et al.  Mimetic finite difference methods for diffusion equations on non-orthogonal AMR meshes , 2003 .

[47]  A. Ern,et al.  A discontinuous Galerkin method with weighted averages for advection–diffusion equations with locally small and anisotropic diffusivity , 2008 .